Loading…
The factorial Schur function
The application of the divided difference of a function to the inhomogeneous symmetric functions (factorial Schur functions) of Biedenharn and Louck is shown to lead to new relations and simplified proofs of their properties. These results include determinantal definitions and the factorial Jacobi–T...
Saved in:
Published in: | Journal of mathematical physics 1993-09, Vol.34 (9), p.4144-4160 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c351t-50e445d111aeb16e030ad1fa114f03540f64a907abd343a9b5412746fb9d64223 |
---|---|
cites | cdi_FETCH-LOGICAL-c351t-50e445d111aeb16e030ad1fa114f03540f64a907abd343a9b5412746fb9d64223 |
container_end_page | 4160 |
container_issue | 9 |
container_start_page | 4144 |
container_title | Journal of mathematical physics |
container_volume | 34 |
creator | Chen, William Y. C. Louck, James D. |
description | The application of the divided difference of a function to the inhomogeneous symmetric functions (factorial Schur functions) of Biedenharn and Louck is shown to lead to new relations and simplified proofs of their properties. These results include determinantal definitions and the factorial Jacobi–Trudi identities with extensions to skew versions. Similar properties of a second class of symmetric functions depending on an arbitrary parameter, and of importance for generalized hypergeometric functions and series, are shown also to be derivable from the divided difference notion, slightly extended. |
doi_str_mv | 10.1063/1.530032 |
format | article |
fullrecord | <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_530032</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jmp</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-50e445d111aeb16e030ad1fa114f03540f64a907abd343a9b5412746fb9d64223</originalsourceid><addsrcrecordid>eNp9z0tLw0AUBeBBFKxV8Ae4KOJCF6n3zivJUoovKLiwroebyQyJ1CTMpIL_3sZINoKrs_k4h8PYOcISQYtbXCoBIPgBmyFkeZJqlR2yGQDnCZdZdsxOYnwHQMyknLGLTeUWnmzfhpq2i1db7cLC7xrb121zyo48baM7-805e3u436yekvXL4_Pqbp1YobBPFDgpVYmI5ArUDgRQiZ4QpQehJHgtKYeUilJIQXmhJPJUal_kpZacizm7HHvb2Ncm2rp3trJt0zjbG80x5Srdo-sR2dDGGJw3Xag_KHwZBDNcN2jG63t6NdKOoqWtD9TYOk5e5JinP403IxsWaTg8kc82THWmK_1_9s_8NyX4cC4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The factorial Schur function</title><source>AIP Digital Archive</source><creator>Chen, William Y. C. ; Louck, James D.</creator><creatorcontrib>Chen, William Y. C. ; Louck, James D.</creatorcontrib><description>The application of the divided difference of a function to the inhomogeneous symmetric functions (factorial Schur functions) of Biedenharn and Louck is shown to lead to new relations and simplified proofs of their properties. These results include determinantal definitions and the factorial Jacobi–Trudi identities with extensions to skew versions. Similar properties of a second class of symmetric functions depending on an arbitrary parameter, and of importance for generalized hypergeometric functions and series, are shown also to be derivable from the divided difference notion, slightly extended.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.530032</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>Melville, NY: American Institute of Physics</publisher><subject>662120 - General Theory of Particles & Fields- Symmetry, Conservation Laws, Currents & Their Properties- (1992-) ; Algebraic methods ; Classical and quantum physics: mechanics and fields ; CLEBSCH-GORDAN COEFFICIENTS ; Exact sciences and technology ; FUNCTIONS ; GROUP THEORY ; HYPERGEOMETRIC FUNCTIONS ; INVARIANCE PRINCIPLES ; IRREDUCIBLE REPRESENTATIONS ; LIE GROUPS ; MATHEMATICS ; MATRICES ; Physics ; PHYSICS OF ELEMENTARY PARTICLES AND FIELDS ; Quantum mechanics ; ROTATIONAL INVARIANCE ; SYMMETRY GROUPS ; UNITARITY ; WIGNER COEFFICIENTS</subject><ispartof>Journal of mathematical physics, 1993-09, Vol.34 (9), p.4144-4160</ispartof><rights>American Institute of Physics</rights><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-50e445d111aeb16e030ad1fa114f03540f64a907abd343a9b5412746fb9d64223</citedby><cites>FETCH-LOGICAL-c351t-50e445d111aeb16e030ad1fa114f03540f64a907abd343a9b5412746fb9d64223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.530032$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,881,1553,27901,27902,76359</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3919757$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/6217257$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, William Y. C.</creatorcontrib><creatorcontrib>Louck, James D.</creatorcontrib><title>The factorial Schur function</title><title>Journal of mathematical physics</title><description>The application of the divided difference of a function to the inhomogeneous symmetric functions (factorial Schur functions) of Biedenharn and Louck is shown to lead to new relations and simplified proofs of their properties. These results include determinantal definitions and the factorial Jacobi–Trudi identities with extensions to skew versions. Similar properties of a second class of symmetric functions depending on an arbitrary parameter, and of importance for generalized hypergeometric functions and series, are shown also to be derivable from the divided difference notion, slightly extended.</description><subject>662120 - General Theory of Particles & Fields- Symmetry, Conservation Laws, Currents & Their Properties- (1992-)</subject><subject>Algebraic methods</subject><subject>Classical and quantum physics: mechanics and fields</subject><subject>CLEBSCH-GORDAN COEFFICIENTS</subject><subject>Exact sciences and technology</subject><subject>FUNCTIONS</subject><subject>GROUP THEORY</subject><subject>HYPERGEOMETRIC FUNCTIONS</subject><subject>INVARIANCE PRINCIPLES</subject><subject>IRREDUCIBLE REPRESENTATIONS</subject><subject>LIE GROUPS</subject><subject>MATHEMATICS</subject><subject>MATRICES</subject><subject>Physics</subject><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><subject>Quantum mechanics</subject><subject>ROTATIONAL INVARIANCE</subject><subject>SYMMETRY GROUPS</subject><subject>UNITARITY</subject><subject>WIGNER COEFFICIENTS</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNp9z0tLw0AUBeBBFKxV8Ae4KOJCF6n3zivJUoovKLiwroebyQyJ1CTMpIL_3sZINoKrs_k4h8PYOcISQYtbXCoBIPgBmyFkeZJqlR2yGQDnCZdZdsxOYnwHQMyknLGLTeUWnmzfhpq2i1db7cLC7xrb121zyo48baM7-805e3u436yekvXL4_Pqbp1YobBPFDgpVYmI5ArUDgRQiZ4QpQehJHgtKYeUilJIQXmhJPJUal_kpZacizm7HHvb2Ncm2rp3trJt0zjbG80x5Srdo-sR2dDGGJw3Xag_KHwZBDNcN2jG63t6NdKOoqWtD9TYOk5e5JinP403IxsWaTg8kc82THWmK_1_9s_8NyX4cC4</recordid><startdate>19930901</startdate><enddate>19930901</enddate><creator>Chen, William Y. C.</creator><creator>Louck, James D.</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19930901</creationdate><title>The factorial Schur function</title><author>Chen, William Y. C. ; Louck, James D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-50e445d111aeb16e030ad1fa114f03540f64a907abd343a9b5412746fb9d64223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>662120 - General Theory of Particles & Fields- Symmetry, Conservation Laws, Currents & Their Properties- (1992-)</topic><topic>Algebraic methods</topic><topic>Classical and quantum physics: mechanics and fields</topic><topic>CLEBSCH-GORDAN COEFFICIENTS</topic><topic>Exact sciences and technology</topic><topic>FUNCTIONS</topic><topic>GROUP THEORY</topic><topic>HYPERGEOMETRIC FUNCTIONS</topic><topic>INVARIANCE PRINCIPLES</topic><topic>IRREDUCIBLE REPRESENTATIONS</topic><topic>LIE GROUPS</topic><topic>MATHEMATICS</topic><topic>MATRICES</topic><topic>Physics</topic><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><topic>Quantum mechanics</topic><topic>ROTATIONAL INVARIANCE</topic><topic>SYMMETRY GROUPS</topic><topic>UNITARITY</topic><topic>WIGNER COEFFICIENTS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, William Y. C.</creatorcontrib><creatorcontrib>Louck, James D.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, William Y. C.</au><au>Louck, James D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The factorial Schur function</atitle><jtitle>Journal of mathematical physics</jtitle><date>1993-09-01</date><risdate>1993</risdate><volume>34</volume><issue>9</issue><spage>4144</spage><epage>4160</epage><pages>4144-4160</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>The application of the divided difference of a function to the inhomogeneous symmetric functions (factorial Schur functions) of Biedenharn and Louck is shown to lead to new relations and simplified proofs of their properties. These results include determinantal definitions and the factorial Jacobi–Trudi identities with extensions to skew versions. Similar properties of a second class of symmetric functions depending on an arbitrary parameter, and of importance for generalized hypergeometric functions and series, are shown also to be derivable from the divided difference notion, slightly extended.</abstract><cop>Melville, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.530032</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2488 |
ispartof | Journal of mathematical physics, 1993-09, Vol.34 (9), p.4144-4160 |
issn | 0022-2488 1089-7658 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_530032 |
source | AIP Digital Archive |
subjects | 662120 - General Theory of Particles & Fields- Symmetry, Conservation Laws, Currents & Their Properties- (1992-) Algebraic methods Classical and quantum physics: mechanics and fields CLEBSCH-GORDAN COEFFICIENTS Exact sciences and technology FUNCTIONS GROUP THEORY HYPERGEOMETRIC FUNCTIONS INVARIANCE PRINCIPLES IRREDUCIBLE REPRESENTATIONS LIE GROUPS MATHEMATICS MATRICES Physics PHYSICS OF ELEMENTARY PARTICLES AND FIELDS Quantum mechanics ROTATIONAL INVARIANCE SYMMETRY GROUPS UNITARITY WIGNER COEFFICIENTS |
title | The factorial Schur function |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T02%3A20%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20factorial%20Schur%20function&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Chen,%20William%20Y.%20C.&rft.date=1993-09-01&rft.volume=34&rft.issue=9&rft.spage=4144&rft.epage=4160&rft.pages=4144-4160&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.530032&rft_dat=%3Cscitation_cross%3Ejmp%3C/scitation_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c351t-50e445d111aeb16e030ad1fa114f03540f64a907abd343a9b5412746fb9d64223%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |