Loading…

The factorial Schur function

The application of the divided difference of a function to the inhomogeneous symmetric functions (factorial Schur functions) of Biedenharn and Louck is shown to lead to new relations and simplified proofs of their properties. These results include determinantal definitions and the factorial Jacobi–T...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mathematical physics 1993-09, Vol.34 (9), p.4144-4160
Main Authors: Chen, William Y. C., Louck, James D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c351t-50e445d111aeb16e030ad1fa114f03540f64a907abd343a9b5412746fb9d64223
cites cdi_FETCH-LOGICAL-c351t-50e445d111aeb16e030ad1fa114f03540f64a907abd343a9b5412746fb9d64223
container_end_page 4160
container_issue 9
container_start_page 4144
container_title Journal of mathematical physics
container_volume 34
creator Chen, William Y. C.
Louck, James D.
description The application of the divided difference of a function to the inhomogeneous symmetric functions (factorial Schur functions) of Biedenharn and Louck is shown to lead to new relations and simplified proofs of their properties. These results include determinantal definitions and the factorial Jacobi–Trudi identities with extensions to skew versions. Similar properties of a second class of symmetric functions depending on an arbitrary parameter, and of importance for generalized hypergeometric functions and series, are shown also to be derivable from the divided difference notion, slightly extended.
doi_str_mv 10.1063/1.530032
format article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_530032</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jmp</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-50e445d111aeb16e030ad1fa114f03540f64a907abd343a9b5412746fb9d64223</originalsourceid><addsrcrecordid>eNp9z0tLw0AUBeBBFKxV8Ae4KOJCF6n3zivJUoovKLiwroebyQyJ1CTMpIL_3sZINoKrs_k4h8PYOcISQYtbXCoBIPgBmyFkeZJqlR2yGQDnCZdZdsxOYnwHQMyknLGLTeUWnmzfhpq2i1db7cLC7xrb121zyo48baM7-805e3u436yekvXL4_Pqbp1YobBPFDgpVYmI5ArUDgRQiZ4QpQehJHgtKYeUilJIQXmhJPJUal_kpZacizm7HHvb2Ncm2rp3trJt0zjbG80x5Srdo-sR2dDGGJw3Xag_KHwZBDNcN2jG63t6NdKOoqWtD9TYOk5e5JinP403IxsWaTg8kc82THWmK_1_9s_8NyX4cC4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The factorial Schur function</title><source>AIP Digital Archive</source><creator>Chen, William Y. C. ; Louck, James D.</creator><creatorcontrib>Chen, William Y. C. ; Louck, James D.</creatorcontrib><description>The application of the divided difference of a function to the inhomogeneous symmetric functions (factorial Schur functions) of Biedenharn and Louck is shown to lead to new relations and simplified proofs of their properties. These results include determinantal definitions and the factorial Jacobi–Trudi identities with extensions to skew versions. Similar properties of a second class of symmetric functions depending on an arbitrary parameter, and of importance for generalized hypergeometric functions and series, are shown also to be derivable from the divided difference notion, slightly extended.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.530032</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>Melville, NY: American Institute of Physics</publisher><subject>662120 - General Theory of Particles &amp; Fields- Symmetry, Conservation Laws, Currents &amp; Their Properties- (1992-) ; Algebraic methods ; Classical and quantum physics: mechanics and fields ; CLEBSCH-GORDAN COEFFICIENTS ; Exact sciences and technology ; FUNCTIONS ; GROUP THEORY ; HYPERGEOMETRIC FUNCTIONS ; INVARIANCE PRINCIPLES ; IRREDUCIBLE REPRESENTATIONS ; LIE GROUPS ; MATHEMATICS ; MATRICES ; Physics ; PHYSICS OF ELEMENTARY PARTICLES AND FIELDS ; Quantum mechanics ; ROTATIONAL INVARIANCE ; SYMMETRY GROUPS ; UNITARITY ; WIGNER COEFFICIENTS</subject><ispartof>Journal of mathematical physics, 1993-09, Vol.34 (9), p.4144-4160</ispartof><rights>American Institute of Physics</rights><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-50e445d111aeb16e030ad1fa114f03540f64a907abd343a9b5412746fb9d64223</citedby><cites>FETCH-LOGICAL-c351t-50e445d111aeb16e030ad1fa114f03540f64a907abd343a9b5412746fb9d64223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.530032$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,881,1553,27901,27902,76359</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3919757$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/6217257$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, William Y. C.</creatorcontrib><creatorcontrib>Louck, James D.</creatorcontrib><title>The factorial Schur function</title><title>Journal of mathematical physics</title><description>The application of the divided difference of a function to the inhomogeneous symmetric functions (factorial Schur functions) of Biedenharn and Louck is shown to lead to new relations and simplified proofs of their properties. These results include determinantal definitions and the factorial Jacobi–Trudi identities with extensions to skew versions. Similar properties of a second class of symmetric functions depending on an arbitrary parameter, and of importance for generalized hypergeometric functions and series, are shown also to be derivable from the divided difference notion, slightly extended.</description><subject>662120 - General Theory of Particles &amp; Fields- Symmetry, Conservation Laws, Currents &amp; Their Properties- (1992-)</subject><subject>Algebraic methods</subject><subject>Classical and quantum physics: mechanics and fields</subject><subject>CLEBSCH-GORDAN COEFFICIENTS</subject><subject>Exact sciences and technology</subject><subject>FUNCTIONS</subject><subject>GROUP THEORY</subject><subject>HYPERGEOMETRIC FUNCTIONS</subject><subject>INVARIANCE PRINCIPLES</subject><subject>IRREDUCIBLE REPRESENTATIONS</subject><subject>LIE GROUPS</subject><subject>MATHEMATICS</subject><subject>MATRICES</subject><subject>Physics</subject><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><subject>Quantum mechanics</subject><subject>ROTATIONAL INVARIANCE</subject><subject>SYMMETRY GROUPS</subject><subject>UNITARITY</subject><subject>WIGNER COEFFICIENTS</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNp9z0tLw0AUBeBBFKxV8Ae4KOJCF6n3zivJUoovKLiwroebyQyJ1CTMpIL_3sZINoKrs_k4h8PYOcISQYtbXCoBIPgBmyFkeZJqlR2yGQDnCZdZdsxOYnwHQMyknLGLTeUWnmzfhpq2i1db7cLC7xrb121zyo48baM7-805e3u436yekvXL4_Pqbp1YobBPFDgpVYmI5ArUDgRQiZ4QpQehJHgtKYeUilJIQXmhJPJUal_kpZacizm7HHvb2Ncm2rp3trJt0zjbG80x5Srdo-sR2dDGGJw3Xag_KHwZBDNcN2jG63t6NdKOoqWtD9TYOk5e5JinP403IxsWaTg8kc82THWmK_1_9s_8NyX4cC4</recordid><startdate>19930901</startdate><enddate>19930901</enddate><creator>Chen, William Y. C.</creator><creator>Louck, James D.</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19930901</creationdate><title>The factorial Schur function</title><author>Chen, William Y. C. ; Louck, James D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-50e445d111aeb16e030ad1fa114f03540f64a907abd343a9b5412746fb9d64223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>662120 - General Theory of Particles &amp; Fields- Symmetry, Conservation Laws, Currents &amp; Their Properties- (1992-)</topic><topic>Algebraic methods</topic><topic>Classical and quantum physics: mechanics and fields</topic><topic>CLEBSCH-GORDAN COEFFICIENTS</topic><topic>Exact sciences and technology</topic><topic>FUNCTIONS</topic><topic>GROUP THEORY</topic><topic>HYPERGEOMETRIC FUNCTIONS</topic><topic>INVARIANCE PRINCIPLES</topic><topic>IRREDUCIBLE REPRESENTATIONS</topic><topic>LIE GROUPS</topic><topic>MATHEMATICS</topic><topic>MATRICES</topic><topic>Physics</topic><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><topic>Quantum mechanics</topic><topic>ROTATIONAL INVARIANCE</topic><topic>SYMMETRY GROUPS</topic><topic>UNITARITY</topic><topic>WIGNER COEFFICIENTS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, William Y. C.</creatorcontrib><creatorcontrib>Louck, James D.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, William Y. C.</au><au>Louck, James D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The factorial Schur function</atitle><jtitle>Journal of mathematical physics</jtitle><date>1993-09-01</date><risdate>1993</risdate><volume>34</volume><issue>9</issue><spage>4144</spage><epage>4160</epage><pages>4144-4160</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>The application of the divided difference of a function to the inhomogeneous symmetric functions (factorial Schur functions) of Biedenharn and Louck is shown to lead to new relations and simplified proofs of their properties. These results include determinantal definitions and the factorial Jacobi–Trudi identities with extensions to skew versions. Similar properties of a second class of symmetric functions depending on an arbitrary parameter, and of importance for generalized hypergeometric functions and series, are shown also to be derivable from the divided difference notion, slightly extended.</abstract><cop>Melville, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.530032</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 1993-09, Vol.34 (9), p.4144-4160
issn 0022-2488
1089-7658
language eng
recordid cdi_crossref_primary_10_1063_1_530032
source AIP Digital Archive
subjects 662120 - General Theory of Particles & Fields- Symmetry, Conservation Laws, Currents & Their Properties- (1992-)
Algebraic methods
Classical and quantum physics: mechanics and fields
CLEBSCH-GORDAN COEFFICIENTS
Exact sciences and technology
FUNCTIONS
GROUP THEORY
HYPERGEOMETRIC FUNCTIONS
INVARIANCE PRINCIPLES
IRREDUCIBLE REPRESENTATIONS
LIE GROUPS
MATHEMATICS
MATRICES
Physics
PHYSICS OF ELEMENTARY PARTICLES AND FIELDS
Quantum mechanics
ROTATIONAL INVARIANCE
SYMMETRY GROUPS
UNITARITY
WIGNER COEFFICIENTS
title The factorial Schur function
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T02%3A20%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20factorial%20Schur%20function&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Chen,%20William%20Y.%20C.&rft.date=1993-09-01&rft.volume=34&rft.issue=9&rft.spage=4144&rft.epage=4160&rft.pages=4144-4160&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.530032&rft_dat=%3Cscitation_cross%3Ejmp%3C/scitation_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c351t-50e445d111aeb16e030ad1fa114f03540f64a907abd343a9b5412746fb9d64223%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true