Loading…
Regular solutions of the Einstein–Yang–Mills equations
It is shown rigorously that any static symmetric solution of the Einstein–Yang–Mills (YM) equations with SU(2) gauge group that is well behaved in the far field is one of three types: black hole, particlelike, or Riessner–Nordström‐like (RN) solution. (In particular, any solution with finite ADM mas...
Saved in:
Published in: | Journal of mathematical physics 1995-08, Vol.36 (8), p.4301-4323 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c329t-788dd9728bf82c323fb8b75dfbcb3a44e4038e0907cc1f087c9eb50f62ebf9453 |
---|---|
cites | cdi_FETCH-LOGICAL-c329t-788dd9728bf82c323fb8b75dfbcb3a44e4038e0907cc1f087c9eb50f62ebf9453 |
container_end_page | 4323 |
container_issue | 8 |
container_start_page | 4301 |
container_title | Journal of mathematical physics |
container_volume | 36 |
creator | Smoller, J. A. Wasserman, A. G. |
description | It is shown rigorously that any static symmetric solution of the Einstein–Yang–Mills (YM) equations with SU(2) gauge group that is well behaved in the far field is one of three types: black hole, particlelike, or Riessner–Nordström‐like (RN) solution. (In particular, any solution with finite ADM mass is well behaved in the far field.) Black‐hole solutions are proven to be analytic at the event horizon and thus coincides with Bartnik–McKinnon (BM) black holes. Furthermore, the singularity in the metric at the event horizon can be transformed away by a Kruskal‐like change of coordinates in which the YM field remains well behaved. Particlelike solutions are shown to satisfy the same initial conditions as the BM solutions at r=0. RN‐like solutions will be considered elsewhere. |
doi_str_mv | 10.1063/1.530963 |
format | article |
fullrecord | <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_530963</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jmp</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-788dd9728bf82c323fb8b75dfbcb3a44e4038e0907cc1f087c9eb50f62ebf9453</originalsourceid><addsrcrecordid>eNqdz81KxDAUBeAgCtZR8BG61EXHm582iTsZZlQYEUQXrkKSJmOktmPSEdz5Dr6hT2Kdig_g6sDl43APQscYphgqeoanJQVZ0R2UYRCy4FUpdlEGQEhBmBD76CClZwCMBWMZOr9zq02jY566ZtOHrk155_P-yeXz0Kbehfbr4_NRt6shbkLTpNy9bvQWHqI9r5vkjn5zgh4W8_vZVbG8vbyeXSwLS4nsCy5EXUtOhPGCDCfqjTC8rL2xhmrGHAMqHEjg1mIPglvpTAm-Is54yUo6QSdjr41dStF5tY7hRcd3hUH9bFZYjZsHejrSZEO__fJf9q2Lf06ta0-_AZKjZuQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Regular solutions of the Einstein–Yang–Mills equations</title><source>AIP Digital Archive</source><creator>Smoller, J. A. ; Wasserman, A. G.</creator><creatorcontrib>Smoller, J. A. ; Wasserman, A. G.</creatorcontrib><description>It is shown rigorously that any static symmetric solution of the Einstein–Yang–Mills (YM) equations with SU(2) gauge group that is well behaved in the far field is one of three types: black hole, particlelike, or Riessner–Nordström‐like (RN) solution. (In particular, any solution with finite ADM mass is well behaved in the far field.) Black‐hole solutions are proven to be analytic at the event horizon and thus coincides with Bartnik–McKinnon (BM) black holes. Furthermore, the singularity in the metric at the event horizon can be transformed away by a Kruskal‐like change of coordinates in which the YM field remains well behaved. Particlelike solutions are shown to satisfy the same initial conditions as the BM solutions at r=0. RN‐like solutions will be considered elsewhere.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.530963</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><ispartof>Journal of mathematical physics, 1995-08, Vol.36 (8), p.4301-4323</ispartof><rights>American Institute of Physics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c329t-788dd9728bf82c323fb8b75dfbcb3a44e4038e0907cc1f087c9eb50f62ebf9453</citedby><cites>FETCH-LOGICAL-c329t-788dd9728bf82c323fb8b75dfbcb3a44e4038e0907cc1f087c9eb50f62ebf9453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.530963$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,1559,27924,27925,76390</link.rule.ids></links><search><creatorcontrib>Smoller, J. A.</creatorcontrib><creatorcontrib>Wasserman, A. G.</creatorcontrib><title>Regular solutions of the Einstein–Yang–Mills equations</title><title>Journal of mathematical physics</title><description>It is shown rigorously that any static symmetric solution of the Einstein–Yang–Mills (YM) equations with SU(2) gauge group that is well behaved in the far field is one of three types: black hole, particlelike, or Riessner–Nordström‐like (RN) solution. (In particular, any solution with finite ADM mass is well behaved in the far field.) Black‐hole solutions are proven to be analytic at the event horizon and thus coincides with Bartnik–McKinnon (BM) black holes. Furthermore, the singularity in the metric at the event horizon can be transformed away by a Kruskal‐like change of coordinates in which the YM field remains well behaved. Particlelike solutions are shown to satisfy the same initial conditions as the BM solutions at r=0. RN‐like solutions will be considered elsewhere.</description><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNqdz81KxDAUBeAgCtZR8BG61EXHm582iTsZZlQYEUQXrkKSJmOktmPSEdz5Dr6hT2Kdig_g6sDl43APQscYphgqeoanJQVZ0R2UYRCy4FUpdlEGQEhBmBD76CClZwCMBWMZOr9zq02jY566ZtOHrk155_P-yeXz0Kbehfbr4_NRt6shbkLTpNy9bvQWHqI9r5vkjn5zgh4W8_vZVbG8vbyeXSwLS4nsCy5EXUtOhPGCDCfqjTC8rL2xhmrGHAMqHEjg1mIPglvpTAm-Is54yUo6QSdjr41dStF5tY7hRcd3hUH9bFZYjZsHejrSZEO__fJf9q2Lf06ta0-_AZKjZuQ</recordid><startdate>19950801</startdate><enddate>19950801</enddate><creator>Smoller, J. A.</creator><creator>Wasserman, A. G.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19950801</creationdate><title>Regular solutions of the Einstein–Yang–Mills equations</title><author>Smoller, J. A. ; Wasserman, A. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-788dd9728bf82c323fb8b75dfbcb3a44e4038e0907cc1f087c9eb50f62ebf9453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smoller, J. A.</creatorcontrib><creatorcontrib>Wasserman, A. G.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smoller, J. A.</au><au>Wasserman, A. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regular solutions of the Einstein–Yang–Mills equations</atitle><jtitle>Journal of mathematical physics</jtitle><date>1995-08-01</date><risdate>1995</risdate><volume>36</volume><issue>8</issue><spage>4301</spage><epage>4323</epage><pages>4301-4323</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>It is shown rigorously that any static symmetric solution of the Einstein–Yang–Mills (YM) equations with SU(2) gauge group that is well behaved in the far field is one of three types: black hole, particlelike, or Riessner–Nordström‐like (RN) solution. (In particular, any solution with finite ADM mass is well behaved in the far field.) Black‐hole solutions are proven to be analytic at the event horizon and thus coincides with Bartnik–McKinnon (BM) black holes. Furthermore, the singularity in the metric at the event horizon can be transformed away by a Kruskal‐like change of coordinates in which the YM field remains well behaved. Particlelike solutions are shown to satisfy the same initial conditions as the BM solutions at r=0. RN‐like solutions will be considered elsewhere.</abstract><doi>10.1063/1.530963</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2488 |
ispartof | Journal of mathematical physics, 1995-08, Vol.36 (8), p.4301-4323 |
issn | 0022-2488 1089-7658 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_530963 |
source | AIP Digital Archive |
title | Regular solutions of the Einstein–Yang–Mills equations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A16%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regular%20solutions%20of%20the%20Einstein%E2%80%93Yang%E2%80%93Mills%20equations&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Smoller,%20J.%20A.&rft.date=1995-08-01&rft.volume=36&rft.issue=8&rft.spage=4301&rft.epage=4323&rft.pages=4301-4323&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.530963&rft_dat=%3Cscitation_cross%3Ejmp%3C/scitation_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c329t-788dd9728bf82c323fb8b75dfbcb3a44e4038e0907cc1f087c9eb50f62ebf9453%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |