Loading…

Regular solutions of the Einstein–Yang–Mills equations

It is shown rigorously that any static symmetric solution of the Einstein–Yang–Mills (YM) equations with SU(2) gauge group that is well behaved in the far field is one of three types: black hole, particlelike, or Riessner–Nordström‐like (RN) solution. (In particular, any solution with finite ADM mas...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mathematical physics 1995-08, Vol.36 (8), p.4301-4323
Main Authors: Smoller, J. A., Wasserman, A. G.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c329t-788dd9728bf82c323fb8b75dfbcb3a44e4038e0907cc1f087c9eb50f62ebf9453
cites cdi_FETCH-LOGICAL-c329t-788dd9728bf82c323fb8b75dfbcb3a44e4038e0907cc1f087c9eb50f62ebf9453
container_end_page 4323
container_issue 8
container_start_page 4301
container_title Journal of mathematical physics
container_volume 36
creator Smoller, J. A.
Wasserman, A. G.
description It is shown rigorously that any static symmetric solution of the Einstein–Yang–Mills (YM) equations with SU(2) gauge group that is well behaved in the far field is one of three types: black hole, particlelike, or Riessner–Nordström‐like (RN) solution. (In particular, any solution with finite ADM mass is well behaved in the far field.) Black‐hole solutions are proven to be analytic at the event horizon and thus coincides with Bartnik–McKinnon (BM) black holes. Furthermore, the singularity in the metric at the event horizon can be transformed away by a Kruskal‐like change of coordinates in which the YM field remains well behaved. Particlelike solutions are shown to satisfy the same initial conditions as the BM solutions at r=0. RN‐like solutions will be considered elsewhere.
doi_str_mv 10.1063/1.530963
format article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_530963</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jmp</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-788dd9728bf82c323fb8b75dfbcb3a44e4038e0907cc1f087c9eb50f62ebf9453</originalsourceid><addsrcrecordid>eNqdz81KxDAUBeAgCtZR8BG61EXHm582iTsZZlQYEUQXrkKSJmOktmPSEdz5Dr6hT2Kdig_g6sDl43APQscYphgqeoanJQVZ0R2UYRCy4FUpdlEGQEhBmBD76CClZwCMBWMZOr9zq02jY566ZtOHrk155_P-yeXz0Kbehfbr4_NRt6shbkLTpNy9bvQWHqI9r5vkjn5zgh4W8_vZVbG8vbyeXSwLS4nsCy5EXUtOhPGCDCfqjTC8rL2xhmrGHAMqHEjg1mIPglvpTAm-Is54yUo6QSdjr41dStF5tY7hRcd3hUH9bFZYjZsHejrSZEO__fJf9q2Lf06ta0-_AZKjZuQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Regular solutions of the Einstein–Yang–Mills equations</title><source>AIP Digital Archive</source><creator>Smoller, J. A. ; Wasserman, A. G.</creator><creatorcontrib>Smoller, J. A. ; Wasserman, A. G.</creatorcontrib><description>It is shown rigorously that any static symmetric solution of the Einstein–Yang–Mills (YM) equations with SU(2) gauge group that is well behaved in the far field is one of three types: black hole, particlelike, or Riessner–Nordström‐like (RN) solution. (In particular, any solution with finite ADM mass is well behaved in the far field.) Black‐hole solutions are proven to be analytic at the event horizon and thus coincides with Bartnik–McKinnon (BM) black holes. Furthermore, the singularity in the metric at the event horizon can be transformed away by a Kruskal‐like change of coordinates in which the YM field remains well behaved. Particlelike solutions are shown to satisfy the same initial conditions as the BM solutions at r=0. RN‐like solutions will be considered elsewhere.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.530963</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><ispartof>Journal of mathematical physics, 1995-08, Vol.36 (8), p.4301-4323</ispartof><rights>American Institute of Physics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c329t-788dd9728bf82c323fb8b75dfbcb3a44e4038e0907cc1f087c9eb50f62ebf9453</citedby><cites>FETCH-LOGICAL-c329t-788dd9728bf82c323fb8b75dfbcb3a44e4038e0907cc1f087c9eb50f62ebf9453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.530963$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,1559,27924,27925,76390</link.rule.ids></links><search><creatorcontrib>Smoller, J. A.</creatorcontrib><creatorcontrib>Wasserman, A. G.</creatorcontrib><title>Regular solutions of the Einstein–Yang–Mills equations</title><title>Journal of mathematical physics</title><description>It is shown rigorously that any static symmetric solution of the Einstein–Yang–Mills (YM) equations with SU(2) gauge group that is well behaved in the far field is one of three types: black hole, particlelike, or Riessner–Nordström‐like (RN) solution. (In particular, any solution with finite ADM mass is well behaved in the far field.) Black‐hole solutions are proven to be analytic at the event horizon and thus coincides with Bartnik–McKinnon (BM) black holes. Furthermore, the singularity in the metric at the event horizon can be transformed away by a Kruskal‐like change of coordinates in which the YM field remains well behaved. Particlelike solutions are shown to satisfy the same initial conditions as the BM solutions at r=0. RN‐like solutions will be considered elsewhere.</description><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNqdz81KxDAUBeAgCtZR8BG61EXHm582iTsZZlQYEUQXrkKSJmOktmPSEdz5Dr6hT2Kdig_g6sDl43APQscYphgqeoanJQVZ0R2UYRCy4FUpdlEGQEhBmBD76CClZwCMBWMZOr9zq02jY566ZtOHrk155_P-yeXz0Kbehfbr4_NRt6shbkLTpNy9bvQWHqI9r5vkjn5zgh4W8_vZVbG8vbyeXSwLS4nsCy5EXUtOhPGCDCfqjTC8rL2xhmrGHAMqHEjg1mIPglvpTAm-Is54yUo6QSdjr41dStF5tY7hRcd3hUH9bFZYjZsHejrSZEO__fJf9q2Lf06ta0-_AZKjZuQ</recordid><startdate>19950801</startdate><enddate>19950801</enddate><creator>Smoller, J. A.</creator><creator>Wasserman, A. G.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19950801</creationdate><title>Regular solutions of the Einstein–Yang–Mills equations</title><author>Smoller, J. A. ; Wasserman, A. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-788dd9728bf82c323fb8b75dfbcb3a44e4038e0907cc1f087c9eb50f62ebf9453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smoller, J. A.</creatorcontrib><creatorcontrib>Wasserman, A. G.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smoller, J. A.</au><au>Wasserman, A. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regular solutions of the Einstein–Yang–Mills equations</atitle><jtitle>Journal of mathematical physics</jtitle><date>1995-08-01</date><risdate>1995</risdate><volume>36</volume><issue>8</issue><spage>4301</spage><epage>4323</epage><pages>4301-4323</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>It is shown rigorously that any static symmetric solution of the Einstein–Yang–Mills (YM) equations with SU(2) gauge group that is well behaved in the far field is one of three types: black hole, particlelike, or Riessner–Nordström‐like (RN) solution. (In particular, any solution with finite ADM mass is well behaved in the far field.) Black‐hole solutions are proven to be analytic at the event horizon and thus coincides with Bartnik–McKinnon (BM) black holes. Furthermore, the singularity in the metric at the event horizon can be transformed away by a Kruskal‐like change of coordinates in which the YM field remains well behaved. Particlelike solutions are shown to satisfy the same initial conditions as the BM solutions at r=0. RN‐like solutions will be considered elsewhere.</abstract><doi>10.1063/1.530963</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 1995-08, Vol.36 (8), p.4301-4323
issn 0022-2488
1089-7658
language eng
recordid cdi_crossref_primary_10_1063_1_530963
source AIP Digital Archive
title Regular solutions of the Einstein–Yang–Mills equations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A16%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regular%20solutions%20of%20the%20Einstein%E2%80%93Yang%E2%80%93Mills%20equations&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Smoller,%20J.%20A.&rft.date=1995-08-01&rft.volume=36&rft.issue=8&rft.spage=4301&rft.epage=4323&rft.pages=4301-4323&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.530963&rft_dat=%3Cscitation_cross%3Ejmp%3C/scitation_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c329t-788dd9728bf82c323fb8b75dfbcb3a44e4038e0907cc1f087c9eb50f62ebf9453%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true