Loading…
Riemannian space-times of Gödel type in five dimensions
The five-dimensional (5D) Riemannian Gödel-type manifolds are examined in light of the equivalence problem techniques, as formulated by Cartan. The necessary and sufficient conditions for local homogeneity of these 5D manifolds are derived. The local equivalence of these homogeneous Riemannian manif...
Saved in:
Published in: | Journal of mathematical physics 1998-04, Vol.39 (4), p.2180-2192 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c327t-3b2f213a3b6e697163008f7a51ad9e07a5db64d231313f176543383a790b5a1d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c327t-3b2f213a3b6e697163008f7a51ad9e07a5db64d231313f176543383a790b5a1d3 |
container_end_page | 2192 |
container_issue | 4 |
container_start_page | 2180 |
container_title | Journal of mathematical physics |
container_volume | 39 |
creator | Rebouças, M. J. Teixeira, A. F. F. |
description | The five-dimensional (5D) Riemannian Gödel-type manifolds are examined in light of the equivalence problem techniques, as formulated by Cartan. The necessary and sufficient conditions for local homogeneity of these 5D manifolds are derived. The local equivalence of these homogeneous Riemannian manifolds is studied. It is found that they are characterized by two essential parameters
m
2
and
ω
: identical pairs
(m
2
,ω)
correspond to locally equivalent 5D manifolds. An irreducible set of isometrically nonequivalent 5D locally homogeneous Riemannian Gödel-type metrics are exhibited. A classification of these manifolds based on the essential parameters is presented, and the Killing vector fields as well as the corresponding Lie algebra of each class are determined. It is shown that apart from the
(m
2
=4ω
2
,ω≠0)
and
(m
2
≠0,ω=0)
classes the homogeneous Riemannian Gödel-type manifolds admit a seven-parameter maximal group of isometry
(G
7
)
. The special class
(m
2
=4ω
2
,ω≠0)
and the degenerated Gödel-type class
(m
2
≠0,ω=0)
are shown to have a
G
9
as maximal group of motion. The breakdown of causality in these classes of homogeneous Gödel-type manifolds are also examined. |
doi_str_mv | 10.1063/1.532281 |
format | article |
fullrecord | <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_532281</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jmp</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-3b2f213a3b6e697163008f7a51ad9e07a5db64d231313f176543383a790b5a1d3</originalsourceid><addsrcrecordid>eNqdj8FKxDAURYMoWEfBT8hSFxnz8to0XcqgozAgiK5D2iQQmaalKQPzY_6AP2ak4gfIXbwL9_C4l5Br4GvgEu9gXaEQCk5IAVw1rJaVOiUF50IwUSp1Ti5S-uAcQJVlQdRrcL2JMZhI02g6x-bQu0QHT7dfn9bt6XwcHQ2R-nBw1OYwpjDEdEnOvNknd_V7V-T98eFt88R2L9vnzf2OdSjqmWErvAA02Eonmxokcq58bSowtnE8G9vK0gqELA-5bYmo0NQNbysDFlfkZvnbTUNKk_N6nEJvpqMGrn8Wa9DL4ozeLmjqwmzm3PJf7GGY_jg9Wo_f30Bixw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Riemannian space-times of Gödel type in five dimensions</title><source>American Institute of Physics (AIP) Publications</source><source>AIP Digital Archive</source><creator>Rebouças, M. J. ; Teixeira, A. F. F.</creator><creatorcontrib>Rebouças, M. J. ; Teixeira, A. F. F.</creatorcontrib><description>The five-dimensional (5D) Riemannian Gödel-type manifolds are examined in light of the equivalence problem techniques, as formulated by Cartan. The necessary and sufficient conditions for local homogeneity of these 5D manifolds are derived. The local equivalence of these homogeneous Riemannian manifolds is studied. It is found that they are characterized by two essential parameters
m
2
and
ω
: identical pairs
(m
2
,ω)
correspond to locally equivalent 5D manifolds. An irreducible set of isometrically nonequivalent 5D locally homogeneous Riemannian Gödel-type metrics are exhibited. A classification of these manifolds based on the essential parameters is presented, and the Killing vector fields as well as the corresponding Lie algebra of each class are determined. It is shown that apart from the
(m
2
=4ω
2
,ω≠0)
and
(m
2
≠0,ω=0)
classes the homogeneous Riemannian Gödel-type manifolds admit a seven-parameter maximal group of isometry
(G
7
)
. The special class
(m
2
=4ω
2
,ω≠0)
and the degenerated Gödel-type class
(m
2
≠0,ω=0)
are shown to have a
G
9
as maximal group of motion. The breakdown of causality in these classes of homogeneous Gödel-type manifolds are also examined.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.532281</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><ispartof>Journal of mathematical physics, 1998-04, Vol.39 (4), p.2180-2192</ispartof><rights>American Institute of Physics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-3b2f213a3b6e697163008f7a51ad9e07a5db64d231313f176543383a790b5a1d3</citedby><cites>FETCH-LOGICAL-c327t-3b2f213a3b6e697163008f7a51ad9e07a5db64d231313f176543383a790b5a1d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.532281$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,782,784,795,1559,27924,27925,76383,76390</link.rule.ids></links><search><creatorcontrib>Rebouças, M. J.</creatorcontrib><creatorcontrib>Teixeira, A. F. F.</creatorcontrib><title>Riemannian space-times of Gödel type in five dimensions</title><title>Journal of mathematical physics</title><description>The five-dimensional (5D) Riemannian Gödel-type manifolds are examined in light of the equivalence problem techniques, as formulated by Cartan. The necessary and sufficient conditions for local homogeneity of these 5D manifolds are derived. The local equivalence of these homogeneous Riemannian manifolds is studied. It is found that they are characterized by two essential parameters
m
2
and
ω
: identical pairs
(m
2
,ω)
correspond to locally equivalent 5D manifolds. An irreducible set of isometrically nonequivalent 5D locally homogeneous Riemannian Gödel-type metrics are exhibited. A classification of these manifolds based on the essential parameters is presented, and the Killing vector fields as well as the corresponding Lie algebra of each class are determined. It is shown that apart from the
(m
2
=4ω
2
,ω≠0)
and
(m
2
≠0,ω=0)
classes the homogeneous Riemannian Gödel-type manifolds admit a seven-parameter maximal group of isometry
(G
7
)
. The special class
(m
2
=4ω
2
,ω≠0)
and the degenerated Gödel-type class
(m
2
≠0,ω=0)
are shown to have a
G
9
as maximal group of motion. The breakdown of causality in these classes of homogeneous Gödel-type manifolds are also examined.</description><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNqdj8FKxDAURYMoWEfBT8hSFxnz8to0XcqgozAgiK5D2iQQmaalKQPzY_6AP2ak4gfIXbwL9_C4l5Br4GvgEu9gXaEQCk5IAVw1rJaVOiUF50IwUSp1Ti5S-uAcQJVlQdRrcL2JMZhI02g6x-bQu0QHT7dfn9bt6XwcHQ2R-nBw1OYwpjDEdEnOvNknd_V7V-T98eFt88R2L9vnzf2OdSjqmWErvAA02Eonmxokcq58bSowtnE8G9vK0gqELA-5bYmo0NQNbysDFlfkZvnbTUNKk_N6nEJvpqMGrn8Wa9DL4ozeLmjqwmzm3PJf7GGY_jg9Wo_f30Bixw</recordid><startdate>19980401</startdate><enddate>19980401</enddate><creator>Rebouças, M. J.</creator><creator>Teixeira, A. F. F.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19980401</creationdate><title>Riemannian space-times of Gödel type in five dimensions</title><author>Rebouças, M. J. ; Teixeira, A. F. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-3b2f213a3b6e697163008f7a51ad9e07a5db64d231313f176543383a790b5a1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rebouças, M. J.</creatorcontrib><creatorcontrib>Teixeira, A. F. F.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rebouças, M. J.</au><au>Teixeira, A. F. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Riemannian space-times of Gödel type in five dimensions</atitle><jtitle>Journal of mathematical physics</jtitle><date>1998-04-01</date><risdate>1998</risdate><volume>39</volume><issue>4</issue><spage>2180</spage><epage>2192</epage><pages>2180-2192</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>The five-dimensional (5D) Riemannian Gödel-type manifolds are examined in light of the equivalence problem techniques, as formulated by Cartan. The necessary and sufficient conditions for local homogeneity of these 5D manifolds are derived. The local equivalence of these homogeneous Riemannian manifolds is studied. It is found that they are characterized by two essential parameters
m
2
and
ω
: identical pairs
(m
2
,ω)
correspond to locally equivalent 5D manifolds. An irreducible set of isometrically nonequivalent 5D locally homogeneous Riemannian Gödel-type metrics are exhibited. A classification of these manifolds based on the essential parameters is presented, and the Killing vector fields as well as the corresponding Lie algebra of each class are determined. It is shown that apart from the
(m
2
=4ω
2
,ω≠0)
and
(m
2
≠0,ω=0)
classes the homogeneous Riemannian Gödel-type manifolds admit a seven-parameter maximal group of isometry
(G
7
)
. The special class
(m
2
=4ω
2
,ω≠0)
and the degenerated Gödel-type class
(m
2
≠0,ω=0)
are shown to have a
G
9
as maximal group of motion. The breakdown of causality in these classes of homogeneous Gödel-type manifolds are also examined.</abstract><doi>10.1063/1.532281</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2488 |
ispartof | Journal of mathematical physics, 1998-04, Vol.39 (4), p.2180-2192 |
issn | 0022-2488 1089-7658 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_532281 |
source | American Institute of Physics (AIP) Publications; AIP Digital Archive |
title | Riemannian space-times of Gödel type in five dimensions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A01%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Riemannian%20space-times%20of%20G%C3%B6del%20type%20in%20five%20dimensions&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Rebou%C3%A7as,%20M.%20J.&rft.date=1998-04-01&rft.volume=39&rft.issue=4&rft.spage=2180&rft.epage=2192&rft.pages=2180-2192&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.532281&rft_dat=%3Cscitation_cross%3Ejmp%3C/scitation_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c327t-3b2f213a3b6e697163008f7a51ad9e07a5db64d231313f176543383a790b5a1d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |