Loading…

Group invariant solutions for the N=2 super Korteweg–de Vries equation

The method of symmetry reduction is used to solve Grassmann-valued differential equations. The (N=2) supersymmetric Korteweg–de Vries equation is considered. It admits a Lie superalgebra of symmetries of dimension 5. A two-dimensional subsuperalgebra is chosen to reduce the number of independent var...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mathematical physics 1999-04, Vol.40 (4), p.1951-1965
Main Authors: Ayari, M. A., Hussin, V., Winternitz, P.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c293t-5b938faeef010c858c3e429ff09ea80c2cffdf44de879cd99ee0580cdf62d3ba3
cites cdi_FETCH-LOGICAL-c293t-5b938faeef010c858c3e429ff09ea80c2cffdf44de879cd99ee0580cdf62d3ba3
container_end_page 1965
container_issue 4
container_start_page 1951
container_title Journal of mathematical physics
container_volume 40
creator Ayari, M. A.
Hussin, V.
Winternitz, P.
description The method of symmetry reduction is used to solve Grassmann-valued differential equations. The (N=2) supersymmetric Korteweg–de Vries equation is considered. It admits a Lie superalgebra of symmetries of dimension 5. A two-dimensional subsuperalgebra is chosen to reduce the number of independent variables in this equation. We are then able to give different types of exact solutions, in particular soliton solutions.
doi_str_mv 10.1063/1.532842
format article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_532842</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jmp</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-5b938faeef010c858c3e429ff09ea80c2cffdf44de879cd99ee0580cdf62d3ba3</originalsourceid><addsrcrecordid>eNp90M1KAzEUBeAgCo5V8BGy1MXUm59pk4ULKbYVi27U7ZAmNzpSJ2MyU3HnO_iGPomtlW4EVxcuH4fDIeSYQZ_BQJyxfiG4knyHZAyUzoeDQu2SDIDznEul9slBSs8AjCkpMzKdxNA1tKqXJlambmkKi66tQp2oD5G2T0hvzjlNXYORXofY4hs-fn18OqQPscJE8bUza39I9rxZJDz6vT1yP768G03z2e3kanQxyy3Xos2LuRbKG0QPDKwqlBUoufYeNBoFllvvnZfSoRpq67RGhGL1d37AnZgb0SMnm1wbQ0oRfdnE6sXE95JBuV6gZOVmgRU93dBkq_an5NYuQ9y6snH-P_sn9xuxC2ul</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Group invariant solutions for the N=2 super Korteweg–de Vries equation</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>American Institute of Physics</source><creator>Ayari, M. A. ; Hussin, V. ; Winternitz, P.</creator><creatorcontrib>Ayari, M. A. ; Hussin, V. ; Winternitz, P.</creatorcontrib><description>The method of symmetry reduction is used to solve Grassmann-valued differential equations. The (N=2) supersymmetric Korteweg–de Vries equation is considered. It admits a Lie superalgebra of symmetries of dimension 5. A two-dimensional subsuperalgebra is chosen to reduce the number of independent variables in this equation. We are then able to give different types of exact solutions, in particular soliton solutions.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.532842</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><ispartof>Journal of mathematical physics, 1999-04, Vol.40 (4), p.1951-1965</ispartof><rights>American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-5b938faeef010c858c3e429ff09ea80c2cffdf44de879cd99ee0580cdf62d3ba3</citedby><cites>FETCH-LOGICAL-c293t-5b938faeef010c858c3e429ff09ea80c2cffdf44de879cd99ee0580cdf62d3ba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.532842$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,778,780,791,27901,27902,76126</link.rule.ids></links><search><creatorcontrib>Ayari, M. A.</creatorcontrib><creatorcontrib>Hussin, V.</creatorcontrib><creatorcontrib>Winternitz, P.</creatorcontrib><title>Group invariant solutions for the N=2 super Korteweg–de Vries equation</title><title>Journal of mathematical physics</title><description>The method of symmetry reduction is used to solve Grassmann-valued differential equations. The (N=2) supersymmetric Korteweg–de Vries equation is considered. It admits a Lie superalgebra of symmetries of dimension 5. A two-dimensional subsuperalgebra is chosen to reduce the number of independent variables in this equation. We are then able to give different types of exact solutions, in particular soliton solutions.</description><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNp90M1KAzEUBeAgCo5V8BGy1MXUm59pk4ULKbYVi27U7ZAmNzpSJ2MyU3HnO_iGPomtlW4EVxcuH4fDIeSYQZ_BQJyxfiG4knyHZAyUzoeDQu2SDIDznEul9slBSs8AjCkpMzKdxNA1tKqXJlambmkKi66tQp2oD5G2T0hvzjlNXYORXofY4hs-fn18OqQPscJE8bUza39I9rxZJDz6vT1yP768G03z2e3kanQxyy3Xos2LuRbKG0QPDKwqlBUoufYeNBoFllvvnZfSoRpq67RGhGL1d37AnZgb0SMnm1wbQ0oRfdnE6sXE95JBuV6gZOVmgRU93dBkq_an5NYuQ9y6snH-P_sn9xuxC2ul</recordid><startdate>19990401</startdate><enddate>19990401</enddate><creator>Ayari, M. A.</creator><creator>Hussin, V.</creator><creator>Winternitz, P.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19990401</creationdate><title>Group invariant solutions for the N=2 super Korteweg–de Vries equation</title><author>Ayari, M. A. ; Hussin, V. ; Winternitz, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-5b938faeef010c858c3e429ff09ea80c2cffdf44de879cd99ee0580cdf62d3ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ayari, M. A.</creatorcontrib><creatorcontrib>Hussin, V.</creatorcontrib><creatorcontrib>Winternitz, P.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ayari, M. A.</au><au>Hussin, V.</au><au>Winternitz, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Group invariant solutions for the N=2 super Korteweg–de Vries equation</atitle><jtitle>Journal of mathematical physics</jtitle><date>1999-04-01</date><risdate>1999</risdate><volume>40</volume><issue>4</issue><spage>1951</spage><epage>1965</epage><pages>1951-1965</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>The method of symmetry reduction is used to solve Grassmann-valued differential equations. The (N=2) supersymmetric Korteweg–de Vries equation is considered. It admits a Lie superalgebra of symmetries of dimension 5. A two-dimensional subsuperalgebra is chosen to reduce the number of independent variables in this equation. We are then able to give different types of exact solutions, in particular soliton solutions.</abstract><doi>10.1063/1.532842</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 1999-04, Vol.40 (4), p.1951-1965
issn 0022-2488
1089-7658
language eng
recordid cdi_crossref_primary_10_1063_1_532842
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); American Institute of Physics
title Group invariant solutions for the N=2 super Korteweg–de Vries equation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A14%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Group%20invariant%20solutions%20for%20the%20N=2%20super%20Korteweg%E2%80%93de%20Vries%20equation&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Ayari,%20M.%20A.&rft.date=1999-04-01&rft.volume=40&rft.issue=4&rft.spage=1951&rft.epage=1965&rft.pages=1951-1965&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.532842&rft_dat=%3Cscitation_cross%3Ejmp%3C/scitation_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-5b938faeef010c858c3e429ff09ea80c2cffdf44de879cd99ee0580cdf62d3ba3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true