Loading…

A finite Reynolds-number approach for the prediction of boundary-layer receptivity in localized regions

Previous theoretical work on the boundary layer receptivity problem has utilized large Reynolds number asymptotic theories, thus being limited to a narrow part of the frequency-Reynolds number domain. An alternative approach is presented for the prediction of localized instability generation which h...

Full description

Saved in:
Bibliographic Details
Published in:Physics of fluids. A, Fluid dynamics Fluid dynamics, 1992-11, Vol.4 (11), p.2495-2514
Main Authors: Choudhari, Meelan, Streett, Craig L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Previous theoretical work on the boundary layer receptivity problem has utilized large Reynolds number asymptotic theories, thus being limited to a narrow part of the frequency-Reynolds number domain. An alternative approach is presented for the prediction of localized instability generation which has a general applicability, and also accounts for finite Reynolds number effects. This approach is illustrated for the case of Tollmien-Schlichting wave generation in a Blasius boundary layer due to the interaction of a free stream acoustic wave with a region of short scale variation in the surface boundary condition. The specific types of wall inhomogeneities studied are: regions of short scale variations in wall suction, wall admittance, and wall geometry (roughness). Extensive comparison is made between the results of the finite Reynolds number approach and previous asymptotic predictions, which also suggests an alternative way of using the latter at Reynolds numbers of interest in practice.
ISSN:0899-8213
2163-5013
DOI:10.1063/1.858437