Loading…

Ion heating and magnetohydrodynamic dynamo fluctuations in the reversed‐field pinch

Ion temperatures have been measured in the Madison Symmetric Torus (MST) [Dexter et al., Fusion Technol. 19, 131 (1991)] reversed‐field pinch (RFP) with a five channel charge exchange analyzer. The characteristic anomalously high ion temperature of RFP discharges has been observed in the MST. The io...

Full description

Saved in:
Bibliographic Details
Published in:Physics of fluids. B, Plasma physics Plasma physics, 1992-12, Vol.4 (12), p.4062-4071
Main Authors: Scime, Earl, Cekic, Miodrag, Den Hartog, D. J., Hokin, Samuel, Holly, D. J., Watts, Christopher
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ion temperatures have been measured in the Madison Symmetric Torus (MST) [Dexter et al., Fusion Technol. 19, 131 (1991)] reversed‐field pinch (RFP) with a five channel charge exchange analyzer. The characteristic anomalously high ion temperature of RFP discharges has been observed in the MST. The ion heating expected from ion–electron collisions is calculated and shown to be too small to explain the measured ion temperatures. The charge exchange determined ion temperature is also compared to measurements of the thermally broadened Cv 227.1 nm line. The ion temperature, T i ≊250 eV for I=360 kA, increases by more than 100% during discrete dynamo bursts in MST discharges. Magnetic field fluctuations in the range 0.5–5 MHz were also measured during the dynamo bursts. Structure in the fluctuation frequency spectrum at the ion cyclotron frequency suggests that the mechanism of ion heating involves the dissipation of dynamo fluctuations at ion cyclotron frequencies.
ISSN:0899-8221
2163-503X
DOI:10.1063/1.860313