Loading…

Free boundary field‐reversed configuration (FRC) equilibria in a conducting cylinder

Highly elongated field‐reversed configuration (FRC) equilibria are computed in a straight conducting cylinder for the pressure profile p′(ψ) = c H(ψ), where H(x) is the Heaviside function. The equilibria are found by inverting the Grad–Shafranov equation by means of a Green’s function and by solving...

Full description

Saved in:
Bibliographic Details
Published in:The Physics of fluids (1958) 1982-08, Vol.25 (8), p.1365-1369
Main Authors: Spencer, Ross L., Hewett, Dennis W.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c386t-e719a217d9db9830e791f2bacb6c45b4726c2726fe7a1be593bdced699d625003
cites cdi_FETCH-LOGICAL-c386t-e719a217d9db9830e791f2bacb6c45b4726c2726fe7a1be593bdced699d625003
container_end_page 1369
container_issue 8
container_start_page 1365
container_title The Physics of fluids (1958)
container_volume 25
creator Spencer, Ross L.
Hewett, Dennis W.
description Highly elongated field‐reversed configuration (FRC) equilibria are computed in a straight conducting cylinder for the pressure profile p′(ψ) = c H(ψ), where H(x) is the Heaviside function. The equilibria are found by inverting the Grad–Shafranov equation by means of a Green’s function and by solving the resulting nonlinear integral equation. Long equilibria are obtained only for values of the constant c very near a critical value: the equilibria change from 2:1 elongated to infinitely long as c varies by only 0.3%. This criticial value of c is predicted by the average beta condition.
doi_str_mv 10.1063/1.863901
format article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_863901</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>scitation_primary_10_1063_1_863901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-e719a217d9db9830e791f2bacb6c45b4726c2726fe7a1be593bdced699d625003</originalsourceid><addsrcrecordid>eNp1kM1KxDAUhYMoWEfBR8hyZtExN2nTZimDMwoDgqjbkp_bIVJbTVphdj6Cz-iT2LFu3Zyz-TjwHUIugS2BSXEFy1IKxeCIJBykSDOlymOSMCYgVVDAKTmL8YUxnkEmEvK8DojUdEPrdNjT2mPjvj-_An5giOio7dra74age9-1dL5-WC0ovg--8SZ4TX1L9YFxg-19u6N23_jWYTgnJ7VuIl789Yw8rW8eV7fp9n5zt7replaUsk-xAKU5FE45o0rBsFBQc6OtkTbLTVZwafkYNRYaDOZKGGfRSaWc5PnoNCPzadeGLsaAdfUW_OtoUgGrDn9UUE1_jOhiQqP1_a_O_-wP06hg9w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Free boundary field‐reversed configuration (FRC) equilibria in a conducting cylinder</title><source>Alma/SFX Local Collection</source><creator>Spencer, Ross L. ; Hewett, Dennis W.</creator><creatorcontrib>Spencer, Ross L. ; Hewett, Dennis W.</creatorcontrib><description>Highly elongated field‐reversed configuration (FRC) equilibria are computed in a straight conducting cylinder for the pressure profile p′(ψ) = c H(ψ), where H(x) is the Heaviside function. The equilibria are found by inverting the Grad–Shafranov equation by means of a Green’s function and by solving the resulting nonlinear integral equation. Long equilibria are obtained only for values of the constant c very near a critical value: the equilibria change from 2:1 elongated to infinitely long as c varies by only 0.3%. This criticial value of c is predicted by the average beta condition.</description><identifier>ISSN: 0031-9171</identifier><identifier>EISSN: 2163-4998</identifier><identifier>DOI: 10.1063/1.863901</identifier><identifier>CODEN: PFLDAS</identifier><language>eng</language><ispartof>The Physics of fluids (1958), 1982-08, Vol.25 (8), p.1365-1369</ispartof><rights>American Institute of Physics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-e719a217d9db9830e791f2bacb6c45b4726c2726fe7a1be593bdced699d625003</citedby><cites>FETCH-LOGICAL-c386t-e719a217d9db9830e791f2bacb6c45b4726c2726fe7a1be593bdced699d625003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Spencer, Ross L.</creatorcontrib><creatorcontrib>Hewett, Dennis W.</creatorcontrib><title>Free boundary field‐reversed configuration (FRC) equilibria in a conducting cylinder</title><title>The Physics of fluids (1958)</title><description>Highly elongated field‐reversed configuration (FRC) equilibria are computed in a straight conducting cylinder for the pressure profile p′(ψ) = c H(ψ), where H(x) is the Heaviside function. The equilibria are found by inverting the Grad–Shafranov equation by means of a Green’s function and by solving the resulting nonlinear integral equation. Long equilibria are obtained only for values of the constant c very near a critical value: the equilibria change from 2:1 elongated to infinitely long as c varies by only 0.3%. This criticial value of c is predicted by the average beta condition.</description><issn>0031-9171</issn><issn>2163-4998</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1982</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KxDAUhYMoWEfBR8hyZtExN2nTZimDMwoDgqjbkp_bIVJbTVphdj6Cz-iT2LFu3Zyz-TjwHUIugS2BSXEFy1IKxeCIJBykSDOlymOSMCYgVVDAKTmL8YUxnkEmEvK8DojUdEPrdNjT2mPjvj-_An5giOio7dra74age9-1dL5-WC0ovg--8SZ4TX1L9YFxg-19u6N23_jWYTgnJ7VuIl789Yw8rW8eV7fp9n5zt7replaUsk-xAKU5FE45o0rBsFBQc6OtkTbLTVZwafkYNRYaDOZKGGfRSaWc5PnoNCPzadeGLsaAdfUW_OtoUgGrDn9UUE1_jOhiQqP1_a_O_-wP06hg9w</recordid><startdate>198208</startdate><enddate>198208</enddate><creator>Spencer, Ross L.</creator><creator>Hewett, Dennis W.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>198208</creationdate><title>Free boundary field‐reversed configuration (FRC) equilibria in a conducting cylinder</title><author>Spencer, Ross L. ; Hewett, Dennis W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-e719a217d9db9830e791f2bacb6c45b4726c2726fe7a1be593bdced699d625003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1982</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Spencer, Ross L.</creatorcontrib><creatorcontrib>Hewett, Dennis W.</creatorcontrib><collection>CrossRef</collection><jtitle>The Physics of fluids (1958)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Spencer, Ross L.</au><au>Hewett, Dennis W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Free boundary field‐reversed configuration (FRC) equilibria in a conducting cylinder</atitle><jtitle>The Physics of fluids (1958)</jtitle><date>1982-08</date><risdate>1982</risdate><volume>25</volume><issue>8</issue><spage>1365</spage><epage>1369</epage><pages>1365-1369</pages><issn>0031-9171</issn><eissn>2163-4998</eissn><coden>PFLDAS</coden><abstract>Highly elongated field‐reversed configuration (FRC) equilibria are computed in a straight conducting cylinder for the pressure profile p′(ψ) = c H(ψ), where H(x) is the Heaviside function. The equilibria are found by inverting the Grad–Shafranov equation by means of a Green’s function and by solving the resulting nonlinear integral equation. Long equilibria are obtained only for values of the constant c very near a critical value: the equilibria change from 2:1 elongated to infinitely long as c varies by only 0.3%. This criticial value of c is predicted by the average beta condition.</abstract><doi>10.1063/1.863901</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9171
ispartof The Physics of fluids (1958), 1982-08, Vol.25 (8), p.1365-1369
issn 0031-9171
2163-4998
language eng
recordid cdi_crossref_primary_10_1063_1_863901
source Alma/SFX Local Collection
title Free boundary field‐reversed configuration (FRC) equilibria in a conducting cylinder
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T08%3A27%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Free%20boundary%20field%E2%80%90reversed%20configuration%20(FRC)%20equilibria%20in%20a%20conducting%20cylinder&rft.jtitle=The%20Physics%20of%20fluids%20(1958)&rft.au=Spencer,%20Ross%20L.&rft.date=1982-08&rft.volume=25&rft.issue=8&rft.spage=1365&rft.epage=1369&rft.pages=1365-1369&rft.issn=0031-9171&rft.eissn=2163-4998&rft.coden=PFLDAS&rft_id=info:doi/10.1063/1.863901&rft_dat=%3Cscitation_cross%3Escitation_primary_10_1063_1_863901%3C/scitation_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c386t-e719a217d9db9830e791f2bacb6c45b4726c2726fe7a1be593bdced699d625003%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true