Loading…

Statistical estimation of a nonlinear diffusion system in a gravitational field

A nonlinear diffusion equation with a diffusion coefficient depending on the number density of diffusing particles affected by gravity is solved approximately for a stationary state. As a result, expectation values of both the number density and its position are estimated to explain the shifts from...

Full description

Saved in:
Bibliographic Details
Published in:The Physics of fluids (1958) 1986-03, Vol.29 (3), p.879-880
Main Author: Etori, Kanji
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c261t-26a45929cf5982ba43224ffc1ebcc129352d9265f6e9372d79b37f04770532d73
cites cdi_FETCH-LOGICAL-c261t-26a45929cf5982ba43224ffc1ebcc129352d9265f6e9372d79b37f04770532d73
container_end_page 880
container_issue 3
container_start_page 879
container_title The Physics of fluids (1958)
container_volume 29
creator Etori, Kanji
description A nonlinear diffusion equation with a diffusion coefficient depending on the number density of diffusing particles affected by gravity is solved approximately for a stationary state. As a result, expectation values of both the number density and its position are estimated to explain the shifts from a linear diffusion system in conventional theories.
doi_str_mv 10.1063/1.865890
format article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_865890</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>scitation_primary_10_1063_1_865890</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-26a45929cf5982ba43224ffc1ebcc129352d9265f6e9372d79b37f04770532d73</originalsourceid><addsrcrecordid>eNp1UEtLxDAYDKJgXQV_Qo566Jrvy6PNURZfsLAH9VzSNJFIt5UkCvvvzbp79TQM82AYQq6BLYEpfgfLVslWsxNSISheC63bU1IxxqHW0MA5uUjpkzEUIHhFNq_Z5JBysGakruC20Hmis6eGTvM0hsmZSIfg_XfaC2mXstvSMBX9I5qfkP8CJe2DG4dLcubNmNzVERfk_fHhbfVcrzdPL6v7dW1RQa5RGSE1auulbrE3giMK7y243lpAzSUOGpX0ymne4NDonjeeiaZhkhfKF-Tm0GvjnFJ0vvuKZXvcdcC6_REddIcjivX2YE32OPZ_7y8Ja10g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Statistical estimation of a nonlinear diffusion system in a gravitational field</title><source>Alma/SFX Local Collection</source><creator>Etori, Kanji</creator><creatorcontrib>Etori, Kanji</creatorcontrib><description>A nonlinear diffusion equation with a diffusion coefficient depending on the number density of diffusing particles affected by gravity is solved approximately for a stationary state. As a result, expectation values of both the number density and its position are estimated to explain the shifts from a linear diffusion system in conventional theories.</description><identifier>ISSN: 0031-9171</identifier><identifier>EISSN: 2163-4998</identifier><identifier>DOI: 10.1063/1.865890</identifier><identifier>CODEN: PFLDAS</identifier><language>eng</language><ispartof>The Physics of fluids (1958), 1986-03, Vol.29 (3), p.879-880</ispartof><rights>American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c261t-26a45929cf5982ba43224ffc1ebcc129352d9265f6e9372d79b37f04770532d73</citedby><cites>FETCH-LOGICAL-c261t-26a45929cf5982ba43224ffc1ebcc129352d9265f6e9372d79b37f04770532d73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Etori, Kanji</creatorcontrib><title>Statistical estimation of a nonlinear diffusion system in a gravitational field</title><title>The Physics of fluids (1958)</title><description>A nonlinear diffusion equation with a diffusion coefficient depending on the number density of diffusing particles affected by gravity is solved approximately for a stationary state. As a result, expectation values of both the number density and its position are estimated to explain the shifts from a linear diffusion system in conventional theories.</description><issn>0031-9171</issn><issn>2163-4998</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1986</creationdate><recordtype>article</recordtype><recordid>eNp1UEtLxDAYDKJgXQV_Qo566Jrvy6PNURZfsLAH9VzSNJFIt5UkCvvvzbp79TQM82AYQq6BLYEpfgfLVslWsxNSISheC63bU1IxxqHW0MA5uUjpkzEUIHhFNq_Z5JBysGakruC20Hmis6eGTvM0hsmZSIfg_XfaC2mXstvSMBX9I5qfkP8CJe2DG4dLcubNmNzVERfk_fHhbfVcrzdPL6v7dW1RQa5RGSE1auulbrE3giMK7y243lpAzSUOGpX0ymne4NDonjeeiaZhkhfKF-Tm0GvjnFJ0vvuKZXvcdcC6_REddIcjivX2YE32OPZ_7y8Ja10g</recordid><startdate>198603</startdate><enddate>198603</enddate><creator>Etori, Kanji</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>198603</creationdate><title>Statistical estimation of a nonlinear diffusion system in a gravitational field</title><author>Etori, Kanji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-26a45929cf5982ba43224ffc1ebcc129352d9265f6e9372d79b37f04770532d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1986</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Etori, Kanji</creatorcontrib><collection>CrossRef</collection><jtitle>The Physics of fluids (1958)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Etori, Kanji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical estimation of a nonlinear diffusion system in a gravitational field</atitle><jtitle>The Physics of fluids (1958)</jtitle><date>1986-03</date><risdate>1986</risdate><volume>29</volume><issue>3</issue><spage>879</spage><epage>880</epage><pages>879-880</pages><issn>0031-9171</issn><eissn>2163-4998</eissn><coden>PFLDAS</coden><abstract>A nonlinear diffusion equation with a diffusion coefficient depending on the number density of diffusing particles affected by gravity is solved approximately for a stationary state. As a result, expectation values of both the number density and its position are estimated to explain the shifts from a linear diffusion system in conventional theories.</abstract><doi>10.1063/1.865890</doi><tpages>2</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-9171
ispartof The Physics of fluids (1958), 1986-03, Vol.29 (3), p.879-880
issn 0031-9171
2163-4998
language eng
recordid cdi_crossref_primary_10_1063_1_865890
source Alma/SFX Local Collection
title Statistical estimation of a nonlinear diffusion system in a gravitational field
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A48%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20estimation%20of%20a%20nonlinear%20diffusion%20system%20in%20a%20gravitational%20field&rft.jtitle=The%20Physics%20of%20fluids%20(1958)&rft.au=Etori,%20Kanji&rft.date=1986-03&rft.volume=29&rft.issue=3&rft.spage=879&rft.epage=880&rft.pages=879-880&rft.issn=0031-9171&rft.eissn=2163-4998&rft.coden=PFLDAS&rft_id=info:doi/10.1063/1.865890&rft_dat=%3Cscitation_cross%3Escitation_primary_10_1063_1_865890%3C/scitation_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c261t-26a45929cf5982ba43224ffc1ebcc129352d9265f6e9372d79b37f04770532d73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true