Loading…

Highly tunable thermal conductivity of C3N under tensile strain: A first-principles study

In this study, the phonon thermal transport in monolayer C 3 N under biaxial strains ranging from 0% to 10% has been investigated using first-principles calculations based on the Boltzmann transport equation. It is found that the thermal conductivity κ of C 3 N shows a nonmonotonic up-and-down behav...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2020-05, Vol.127 (18)
Main Authors: Taheri, Armin, Da Silva, Carlos, Amon, Cristina H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c327t-16fe2330d9b66da9b2eead4f29f58ddd3cefb873d8deed23bc832b74915e2f703
cites cdi_FETCH-LOGICAL-c327t-16fe2330d9b66da9b2eead4f29f58ddd3cefb873d8deed23bc832b74915e2f703
container_end_page
container_issue 18
container_start_page
container_title Journal of applied physics
container_volume 127
creator Taheri, Armin
Da Silva, Carlos
Amon, Cristina H.
description In this study, the phonon thermal transport in monolayer C 3 N under biaxial strains ranging from 0% to 10% has been investigated using first-principles calculations based on the Boltzmann transport equation. It is found that the thermal conductivity κ of C 3 N shows a nonmonotonic up-and-down behavior in response to tensile strain, and the maximum κ occurs at a strain of 6%. Interestingly, the thermal conductivity of monolayer C 3 N shows a remarkable high strain tunability, as its value at 6% strain is about 13.2 times higher than the value of κ in an unstrained monolayer. A mode-by-mode phonon level analysis shows that a competition between different phonon properties is responsible for such variations in the thermal conductivity. We found that the decrease in group velocity of the transverse acoustic, longitudinal acoustic, and optical modes as well as the increase in the three-phonon phase space of all the acoustic modes tend to reduce the thermal conductivity with strain. However, the group velocity of the z-direction acoustic mode and the Grüneisen parameter of all acoustic modes change in the direction of increasing the phonon lifetime and the thermal conductivity with increasing strain. Upon stretching, the change in the Grüneisen parameter and the phonon lifetime of the acoustic modes is found to be drastically higher than the change in other properties. The competition between these opposite effects leads to the up-and-down behavior of the thermal conductivity in C 3 N.
doi_str_mv 10.1063/5.0006775
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0006775</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2402599132</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-16fe2330d9b66da9b2eead4f29f58ddd3cefb873d8deed23bc832b74915e2f703</originalsourceid><addsrcrecordid>eNp90MtKAzEUBuAgCtbqwjcIuFKYmkszmbgrRa1QdKMLVyGTi02ZZmqSKczbO9KiC8HVWZyP_xx-AC4xmmBU0ls2QQiVnLMjMMKoEgVnDB2DEUIEF5Xg4hScpbRGCOOKihF4X_iPVdPD3AVVNxbmlY0b1UDdBtPp7Hc-97B1cE6fYReMjTDbkPwgU47Khzs4g87HlItt9EH7bWPTsOpMfw5OnGqSvTjMMXh7uH-dL4rly-PTfLYsNCU8F7h0llCKjKjL0ihRE2uVmToiHKuMMVRbV1ecmspYawitdUVJzacCM0scR3QMrva529h-djZluW67GIaTkkwRYUJgSgZ1vVc6tilF6-Tw70bFXmIkv5uTTB6aG-zN3ibts8q-DT9418ZfKLfG_Yf_Jn8Bnhp9cQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2402599132</pqid></control><display><type>article</type><title>Highly tunable thermal conductivity of C3N under tensile strain: A first-principles study</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Taheri, Armin ; Da Silva, Carlos ; Amon, Cristina H.</creator><creatorcontrib>Taheri, Armin ; Da Silva, Carlos ; Amon, Cristina H.</creatorcontrib><description>In this study, the phonon thermal transport in monolayer C 3 N under biaxial strains ranging from 0% to 10% has been investigated using first-principles calculations based on the Boltzmann transport equation. It is found that the thermal conductivity κ of C 3 N shows a nonmonotonic up-and-down behavior in response to tensile strain, and the maximum κ occurs at a strain of 6%. Interestingly, the thermal conductivity of monolayer C 3 N shows a remarkable high strain tunability, as its value at 6% strain is about 13.2 times higher than the value of κ in an unstrained monolayer. A mode-by-mode phonon level analysis shows that a competition between different phonon properties is responsible for such variations in the thermal conductivity. We found that the decrease in group velocity of the transverse acoustic, longitudinal acoustic, and optical modes as well as the increase in the three-phonon phase space of all the acoustic modes tend to reduce the thermal conductivity with strain. However, the group velocity of the z-direction acoustic mode and the Grüneisen parameter of all acoustic modes change in the direction of increasing the phonon lifetime and the thermal conductivity with increasing strain. Upon stretching, the change in the Grüneisen parameter and the phonon lifetime of the acoustic modes is found to be drastically higher than the change in other properties. The competition between these opposite effects leads to the up-and-down behavior of the thermal conductivity in C 3 N.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0006775</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Acoustics ; Applied physics ; Boltzmann transport equation ; Competition ; First principles ; Group velocity ; Gruneisen parameter ; Heat conductivity ; Heat transfer ; Mathematical analysis ; Monolayers ; Phonons ; Tensile strain ; Thermal conductivity ; Transport equations</subject><ispartof>Journal of applied physics, 2020-05, Vol.127 (18)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-16fe2330d9b66da9b2eead4f29f58ddd3cefb873d8deed23bc832b74915e2f703</citedby><cites>FETCH-LOGICAL-c327t-16fe2330d9b66da9b2eead4f29f58ddd3cefb873d8deed23bc832b74915e2f703</cites><orcidid>0000-0002-5044-1301</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Taheri, Armin</creatorcontrib><creatorcontrib>Da Silva, Carlos</creatorcontrib><creatorcontrib>Amon, Cristina H.</creatorcontrib><title>Highly tunable thermal conductivity of C3N under tensile strain: A first-principles study</title><title>Journal of applied physics</title><description>In this study, the phonon thermal transport in monolayer C 3 N under biaxial strains ranging from 0% to 10% has been investigated using first-principles calculations based on the Boltzmann transport equation. It is found that the thermal conductivity κ of C 3 N shows a nonmonotonic up-and-down behavior in response to tensile strain, and the maximum κ occurs at a strain of 6%. Interestingly, the thermal conductivity of monolayer C 3 N shows a remarkable high strain tunability, as its value at 6% strain is about 13.2 times higher than the value of κ in an unstrained monolayer. A mode-by-mode phonon level analysis shows that a competition between different phonon properties is responsible for such variations in the thermal conductivity. We found that the decrease in group velocity of the transverse acoustic, longitudinal acoustic, and optical modes as well as the increase in the three-phonon phase space of all the acoustic modes tend to reduce the thermal conductivity with strain. However, the group velocity of the z-direction acoustic mode and the Grüneisen parameter of all acoustic modes change in the direction of increasing the phonon lifetime and the thermal conductivity with increasing strain. Upon stretching, the change in the Grüneisen parameter and the phonon lifetime of the acoustic modes is found to be drastically higher than the change in other properties. The competition between these opposite effects leads to the up-and-down behavior of the thermal conductivity in C 3 N.</description><subject>Acoustics</subject><subject>Applied physics</subject><subject>Boltzmann transport equation</subject><subject>Competition</subject><subject>First principles</subject><subject>Group velocity</subject><subject>Gruneisen parameter</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Mathematical analysis</subject><subject>Monolayers</subject><subject>Phonons</subject><subject>Tensile strain</subject><subject>Thermal conductivity</subject><subject>Transport equations</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90MtKAzEUBuAgCtbqwjcIuFKYmkszmbgrRa1QdKMLVyGTi02ZZmqSKczbO9KiC8HVWZyP_xx-AC4xmmBU0ls2QQiVnLMjMMKoEgVnDB2DEUIEF5Xg4hScpbRGCOOKihF4X_iPVdPD3AVVNxbmlY0b1UDdBtPp7Hc-97B1cE6fYReMjTDbkPwgU47Khzs4g87HlItt9EH7bWPTsOpMfw5OnGqSvTjMMXh7uH-dL4rly-PTfLYsNCU8F7h0llCKjKjL0ihRE2uVmToiHKuMMVRbV1ecmspYawitdUVJzacCM0scR3QMrva529h-djZluW67GIaTkkwRYUJgSgZ1vVc6tilF6-Tw70bFXmIkv5uTTB6aG-zN3ibts8q-DT9418ZfKLfG_Yf_Jn8Bnhp9cQ</recordid><startdate>20200514</startdate><enddate>20200514</enddate><creator>Taheri, Armin</creator><creator>Da Silva, Carlos</creator><creator>Amon, Cristina H.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5044-1301</orcidid></search><sort><creationdate>20200514</creationdate><title>Highly tunable thermal conductivity of C3N under tensile strain: A first-principles study</title><author>Taheri, Armin ; Da Silva, Carlos ; Amon, Cristina H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-16fe2330d9b66da9b2eead4f29f58ddd3cefb873d8deed23bc832b74915e2f703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acoustics</topic><topic>Applied physics</topic><topic>Boltzmann transport equation</topic><topic>Competition</topic><topic>First principles</topic><topic>Group velocity</topic><topic>Gruneisen parameter</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Mathematical analysis</topic><topic>Monolayers</topic><topic>Phonons</topic><topic>Tensile strain</topic><topic>Thermal conductivity</topic><topic>Transport equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Taheri, Armin</creatorcontrib><creatorcontrib>Da Silva, Carlos</creatorcontrib><creatorcontrib>Amon, Cristina H.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Taheri, Armin</au><au>Da Silva, Carlos</au><au>Amon, Cristina H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly tunable thermal conductivity of C3N under tensile strain: A first-principles study</atitle><jtitle>Journal of applied physics</jtitle><date>2020-05-14</date><risdate>2020</risdate><volume>127</volume><issue>18</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>In this study, the phonon thermal transport in monolayer C 3 N under biaxial strains ranging from 0% to 10% has been investigated using first-principles calculations based on the Boltzmann transport equation. It is found that the thermal conductivity κ of C 3 N shows a nonmonotonic up-and-down behavior in response to tensile strain, and the maximum κ occurs at a strain of 6%. Interestingly, the thermal conductivity of monolayer C 3 N shows a remarkable high strain tunability, as its value at 6% strain is about 13.2 times higher than the value of κ in an unstrained monolayer. A mode-by-mode phonon level analysis shows that a competition between different phonon properties is responsible for such variations in the thermal conductivity. We found that the decrease in group velocity of the transverse acoustic, longitudinal acoustic, and optical modes as well as the increase in the three-phonon phase space of all the acoustic modes tend to reduce the thermal conductivity with strain. However, the group velocity of the z-direction acoustic mode and the Grüneisen parameter of all acoustic modes change in the direction of increasing the phonon lifetime and the thermal conductivity with increasing strain. Upon stretching, the change in the Grüneisen parameter and the phonon lifetime of the acoustic modes is found to be drastically higher than the change in other properties. The competition between these opposite effects leads to the up-and-down behavior of the thermal conductivity in C 3 N.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0006775</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5044-1301</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2020-05, Vol.127 (18)
issn 0021-8979
1089-7550
language eng
recordid cdi_crossref_primary_10_1063_5_0006775
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Acoustics
Applied physics
Boltzmann transport equation
Competition
First principles
Group velocity
Gruneisen parameter
Heat conductivity
Heat transfer
Mathematical analysis
Monolayers
Phonons
Tensile strain
Thermal conductivity
Transport equations
title Highly tunable thermal conductivity of C3N under tensile strain: A first-principles study
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T15%3A43%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20tunable%20thermal%20conductivity%20of%20C3N%20under%20tensile%20strain:%20A%20first-principles%20study&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Taheri,%20Armin&rft.date=2020-05-14&rft.volume=127&rft.issue=18&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0006775&rft_dat=%3Cproquest_cross%3E2402599132%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c327t-16fe2330d9b66da9b2eead4f29f58ddd3cefb873d8deed23bc832b74915e2f703%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2402599132&rft_id=info:pmid/&rfr_iscdi=true