Loading…

Magnetic domain wall curvature induced by wire edge pinning

In this study, we report on the analysis of the magnetic domain wall (DW) curvature due to magnetic field induced motion in Ta/CoFeB/MgO and Pt/Co/Pt wires with perpendicular magnetic anisotropy. In wires of 20 μm and 25 μm, a large edge pinning potential produces the anchoring of the DW ends to the...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2020-08, Vol.117 (6)
Main Authors: Herrera Diez, L., Ummelen, F., Jeudy, V., Durin, G., Lopez-Diaz, L., Diaz-Pardo, R., Casiraghi, A., Agnus, G., Bouville, D., Langer, J., Ocker, B., Lavrijsen, R., Swagten, H. J. M., Ravelosona, D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c396t-a9b2318501d881ddc7b222d669a6304dbc84eef2e9e4174aaabbdb7a76a941e43
cites cdi_FETCH-LOGICAL-c396t-a9b2318501d881ddc7b222d669a6304dbc84eef2e9e4174aaabbdb7a76a941e43
container_end_page
container_issue 6
container_start_page
container_title Applied physics letters
container_volume 117
creator Herrera Diez, L.
Ummelen, F.
Jeudy, V.
Durin, G.
Lopez-Diaz, L.
Diaz-Pardo, R.
Casiraghi, A.
Agnus, G.
Bouville, D.
Langer, J.
Ocker, B.
Lavrijsen, R.
Swagten, H. J. M.
Ravelosona, D.
description In this study, we report on the analysis of the magnetic domain wall (DW) curvature due to magnetic field induced motion in Ta/CoFeB/MgO and Pt/Co/Pt wires with perpendicular magnetic anisotropy. In wires of 20 μm and 25 μm, a large edge pinning potential produces the anchoring of the DW ends to the wire edges, which is evidenced as a significant curvature of the DW front as it propagates. As the driving magnetic field is increased, the curvature reduces as a result of the system moving away from the creep regime of DW motion, which implies a weaker dependence of the DW dynamics on the interaction between the DW and the wire edge defects. A simple model is derived to describe the dependence of the DW curvature on the driving magnetic field and allows us to extract the parameter σE, which accounts for the strength of the edge pinning potential. The model describes well the systems with both weak and strong bulk pinning potentials like Ta/CoFeB/MgO and Pt/Co/Pt, respectively. This provides a means to quantify the effect of edge pinning induced DW curvature on magnetic DW dynamics.
doi_str_mv 10.1063/5.0010798
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0010798</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2434135761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-a9b2318501d881ddc7b222d669a6304dbc84eef2e9e4174aaabbdb7a76a941e43</originalsourceid><addsrcrecordid>eNqdkE9Lw0AUxBdRsFYPfoOAJ4XU_ZdNFk-lqBUqXvS8vOxu6pZ0N26Sln57U1rs3dMwjx_DvEHoluAJwYI9ZhOMCc5lcYZGg-YpI6Q4RyOMMUuFzMglumrb1WAzytgIPb3D0tvO6cSENTifbKGuE93HDXR9tInzptfWJOUu2brBW7O0SeO8d355jS4qqFt7c9Qx-np5_pzN08XH69tsukg1k6JLQZaUkSLDxBQFMUbnJaXUCCFBMMxNqQtubUWttJzkHADK0pQ55AIkJ5azMbo_5H5DrZro1hB3KoBT8-lC7W-YSjE8X2zIwN4d2CaGn962nVqFPvqhnqKcccKyXJBToo6hbaOt_mIJVvsdVaaOOw7sw4Ftteugc8H_D96EeAJVYyr2C8x4fxc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2434135761</pqid></control><display><type>article</type><title>Magnetic domain wall curvature induced by wire edge pinning</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP Journals (American Institute of Physics)</source><creator>Herrera Diez, L. ; Ummelen, F. ; Jeudy, V. ; Durin, G. ; Lopez-Diaz, L. ; Diaz-Pardo, R. ; Casiraghi, A. ; Agnus, G. ; Bouville, D. ; Langer, J. ; Ocker, B. ; Lavrijsen, R. ; Swagten, H. J. M. ; Ravelosona, D.</creator><creatorcontrib>Herrera Diez, L. ; Ummelen, F. ; Jeudy, V. ; Durin, G. ; Lopez-Diaz, L. ; Diaz-Pardo, R. ; Casiraghi, A. ; Agnus, G. ; Bouville, D. ; Langer, J. ; Ocker, B. ; Lavrijsen, R. ; Swagten, H. J. M. ; Ravelosona, D.</creatorcontrib><description>In this study, we report on the analysis of the magnetic domain wall (DW) curvature due to magnetic field induced motion in Ta/CoFeB/MgO and Pt/Co/Pt wires with perpendicular magnetic anisotropy. In wires of 20 μm and 25 μm, a large edge pinning potential produces the anchoring of the DW ends to the wire edges, which is evidenced as a significant curvature of the DW front as it propagates. As the driving magnetic field is increased, the curvature reduces as a result of the system moving away from the creep regime of DW motion, which implies a weaker dependence of the DW dynamics on the interaction between the DW and the wire edge defects. A simple model is derived to describe the dependence of the DW curvature on the driving magnetic field and allows us to extract the parameter σE, which accounts for the strength of the edge pinning potential. The model describes well the systems with both weak and strong bulk pinning potentials like Ta/CoFeB/MgO and Pt/Co/Pt, respectively. This provides a means to quantify the effect of edge pinning induced DW curvature on magnetic DW dynamics.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0010798</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Anchoring ; Applied physics ; Cobalt ; Curvature ; Dependence ; Domain walls ; Magnesium oxide ; Magnetic anisotropy ; Magnetic domains ; Magnetic fields ; Physics ; Pinning ; Platinum ; Tantalum ; Wire</subject><ispartof>Applied physics letters, 2020-08, Vol.117 (6)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-a9b2318501d881ddc7b222d669a6304dbc84eef2e9e4174aaabbdb7a76a941e43</citedby><cites>FETCH-LOGICAL-c396t-a9b2318501d881ddc7b222d669a6304dbc84eef2e9e4174aaabbdb7a76a941e43</cites><orcidid>0000-0002-6319-8259 ; 0000-0002-7019-2234 ; 0000-0002-2058-4272 ; 0000-0002-1209-5858 ; 0000-0002-9773-1875 ; 0000-0002-3546-5110</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0010798$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,782,784,795,885,27924,27925,76383</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02960638$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Herrera Diez, L.</creatorcontrib><creatorcontrib>Ummelen, F.</creatorcontrib><creatorcontrib>Jeudy, V.</creatorcontrib><creatorcontrib>Durin, G.</creatorcontrib><creatorcontrib>Lopez-Diaz, L.</creatorcontrib><creatorcontrib>Diaz-Pardo, R.</creatorcontrib><creatorcontrib>Casiraghi, A.</creatorcontrib><creatorcontrib>Agnus, G.</creatorcontrib><creatorcontrib>Bouville, D.</creatorcontrib><creatorcontrib>Langer, J.</creatorcontrib><creatorcontrib>Ocker, B.</creatorcontrib><creatorcontrib>Lavrijsen, R.</creatorcontrib><creatorcontrib>Swagten, H. J. M.</creatorcontrib><creatorcontrib>Ravelosona, D.</creatorcontrib><title>Magnetic domain wall curvature induced by wire edge pinning</title><title>Applied physics letters</title><description>In this study, we report on the analysis of the magnetic domain wall (DW) curvature due to magnetic field induced motion in Ta/CoFeB/MgO and Pt/Co/Pt wires with perpendicular magnetic anisotropy. In wires of 20 μm and 25 μm, a large edge pinning potential produces the anchoring of the DW ends to the wire edges, which is evidenced as a significant curvature of the DW front as it propagates. As the driving magnetic field is increased, the curvature reduces as a result of the system moving away from the creep regime of DW motion, which implies a weaker dependence of the DW dynamics on the interaction between the DW and the wire edge defects. A simple model is derived to describe the dependence of the DW curvature on the driving magnetic field and allows us to extract the parameter σE, which accounts for the strength of the edge pinning potential. The model describes well the systems with both weak and strong bulk pinning potentials like Ta/CoFeB/MgO and Pt/Co/Pt, respectively. This provides a means to quantify the effect of edge pinning induced DW curvature on magnetic DW dynamics.</description><subject>Anchoring</subject><subject>Applied physics</subject><subject>Cobalt</subject><subject>Curvature</subject><subject>Dependence</subject><subject>Domain walls</subject><subject>Magnesium oxide</subject><subject>Magnetic anisotropy</subject><subject>Magnetic domains</subject><subject>Magnetic fields</subject><subject>Physics</subject><subject>Pinning</subject><subject>Platinum</subject><subject>Tantalum</subject><subject>Wire</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqdkE9Lw0AUxBdRsFYPfoOAJ4XU_ZdNFk-lqBUqXvS8vOxu6pZ0N26Sln57U1rs3dMwjx_DvEHoluAJwYI9ZhOMCc5lcYZGg-YpI6Q4RyOMMUuFzMglumrb1WAzytgIPb3D0tvO6cSENTifbKGuE93HDXR9tInzptfWJOUu2brBW7O0SeO8d355jS4qqFt7c9Qx-np5_pzN08XH69tsukg1k6JLQZaUkSLDxBQFMUbnJaXUCCFBMMxNqQtubUWttJzkHADK0pQ55AIkJ5azMbo_5H5DrZro1hB3KoBT8-lC7W-YSjE8X2zIwN4d2CaGn962nVqFPvqhnqKcccKyXJBToo6hbaOt_mIJVvsdVaaOOw7sw4Ftteugc8H_D96EeAJVYyr2C8x4fxc</recordid><startdate>20200810</startdate><enddate>20200810</enddate><creator>Herrera Diez, L.</creator><creator>Ummelen, F.</creator><creator>Jeudy, V.</creator><creator>Durin, G.</creator><creator>Lopez-Diaz, L.</creator><creator>Diaz-Pardo, R.</creator><creator>Casiraghi, A.</creator><creator>Agnus, G.</creator><creator>Bouville, D.</creator><creator>Langer, J.</creator><creator>Ocker, B.</creator><creator>Lavrijsen, R.</creator><creator>Swagten, H. J. M.</creator><creator>Ravelosona, D.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-6319-8259</orcidid><orcidid>https://orcid.org/0000-0002-7019-2234</orcidid><orcidid>https://orcid.org/0000-0002-2058-4272</orcidid><orcidid>https://orcid.org/0000-0002-1209-5858</orcidid><orcidid>https://orcid.org/0000-0002-9773-1875</orcidid><orcidid>https://orcid.org/0000-0002-3546-5110</orcidid></search><sort><creationdate>20200810</creationdate><title>Magnetic domain wall curvature induced by wire edge pinning</title><author>Herrera Diez, L. ; Ummelen, F. ; Jeudy, V. ; Durin, G. ; Lopez-Diaz, L. ; Diaz-Pardo, R. ; Casiraghi, A. ; Agnus, G. ; Bouville, D. ; Langer, J. ; Ocker, B. ; Lavrijsen, R. ; Swagten, H. J. M. ; Ravelosona, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-a9b2318501d881ddc7b222d669a6304dbc84eef2e9e4174aaabbdb7a76a941e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anchoring</topic><topic>Applied physics</topic><topic>Cobalt</topic><topic>Curvature</topic><topic>Dependence</topic><topic>Domain walls</topic><topic>Magnesium oxide</topic><topic>Magnetic anisotropy</topic><topic>Magnetic domains</topic><topic>Magnetic fields</topic><topic>Physics</topic><topic>Pinning</topic><topic>Platinum</topic><topic>Tantalum</topic><topic>Wire</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Herrera Diez, L.</creatorcontrib><creatorcontrib>Ummelen, F.</creatorcontrib><creatorcontrib>Jeudy, V.</creatorcontrib><creatorcontrib>Durin, G.</creatorcontrib><creatorcontrib>Lopez-Diaz, L.</creatorcontrib><creatorcontrib>Diaz-Pardo, R.</creatorcontrib><creatorcontrib>Casiraghi, A.</creatorcontrib><creatorcontrib>Agnus, G.</creatorcontrib><creatorcontrib>Bouville, D.</creatorcontrib><creatorcontrib>Langer, J.</creatorcontrib><creatorcontrib>Ocker, B.</creatorcontrib><creatorcontrib>Lavrijsen, R.</creatorcontrib><creatorcontrib>Swagten, H. J. M.</creatorcontrib><creatorcontrib>Ravelosona, D.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Herrera Diez, L.</au><au>Ummelen, F.</au><au>Jeudy, V.</au><au>Durin, G.</au><au>Lopez-Diaz, L.</au><au>Diaz-Pardo, R.</au><au>Casiraghi, A.</au><au>Agnus, G.</au><au>Bouville, D.</au><au>Langer, J.</au><au>Ocker, B.</au><au>Lavrijsen, R.</au><au>Swagten, H. J. M.</au><au>Ravelosona, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic domain wall curvature induced by wire edge pinning</atitle><jtitle>Applied physics letters</jtitle><date>2020-08-10</date><risdate>2020</risdate><volume>117</volume><issue>6</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>In this study, we report on the analysis of the magnetic domain wall (DW) curvature due to magnetic field induced motion in Ta/CoFeB/MgO and Pt/Co/Pt wires with perpendicular magnetic anisotropy. In wires of 20 μm and 25 μm, a large edge pinning potential produces the anchoring of the DW ends to the wire edges, which is evidenced as a significant curvature of the DW front as it propagates. As the driving magnetic field is increased, the curvature reduces as a result of the system moving away from the creep regime of DW motion, which implies a weaker dependence of the DW dynamics on the interaction between the DW and the wire edge defects. A simple model is derived to describe the dependence of the DW curvature on the driving magnetic field and allows us to extract the parameter σE, which accounts for the strength of the edge pinning potential. The model describes well the systems with both weak and strong bulk pinning potentials like Ta/CoFeB/MgO and Pt/Co/Pt, respectively. This provides a means to quantify the effect of edge pinning induced DW curvature on magnetic DW dynamics.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0010798</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-6319-8259</orcidid><orcidid>https://orcid.org/0000-0002-7019-2234</orcidid><orcidid>https://orcid.org/0000-0002-2058-4272</orcidid><orcidid>https://orcid.org/0000-0002-1209-5858</orcidid><orcidid>https://orcid.org/0000-0002-9773-1875</orcidid><orcidid>https://orcid.org/0000-0002-3546-5110</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2020-08, Vol.117 (6)
issn 0003-6951
1077-3118
language eng
recordid cdi_crossref_primary_10_1063_5_0010798
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP Journals (American Institute of Physics)
subjects Anchoring
Applied physics
Cobalt
Curvature
Dependence
Domain walls
Magnesium oxide
Magnetic anisotropy
Magnetic domains
Magnetic fields
Physics
Pinning
Platinum
Tantalum
Wire
title Magnetic domain wall curvature induced by wire edge pinning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T00%3A39%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20domain%20wall%20curvature%20induced%20by%20wire%20edge%20pinning&rft.jtitle=Applied%20physics%20letters&rft.au=Herrera%20Diez,%20L.&rft.date=2020-08-10&rft.volume=117&rft.issue=6&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0010798&rft_dat=%3Cproquest_cross%3E2434135761%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c396t-a9b2318501d881ddc7b222d669a6304dbc84eef2e9e4174aaabbdb7a76a941e43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2434135761&rft_id=info:pmid/&rfr_iscdi=true