Loading…
Magnetic domain wall curvature induced by wire edge pinning
In this study, we report on the analysis of the magnetic domain wall (DW) curvature due to magnetic field induced motion in Ta/CoFeB/MgO and Pt/Co/Pt wires with perpendicular magnetic anisotropy. In wires of 20 μm and 25 μm, a large edge pinning potential produces the anchoring of the DW ends to the...
Saved in:
Published in: | Applied physics letters 2020-08, Vol.117 (6) |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c396t-a9b2318501d881ddc7b222d669a6304dbc84eef2e9e4174aaabbdb7a76a941e43 |
---|---|
cites | cdi_FETCH-LOGICAL-c396t-a9b2318501d881ddc7b222d669a6304dbc84eef2e9e4174aaabbdb7a76a941e43 |
container_end_page | |
container_issue | 6 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 117 |
creator | Herrera Diez, L. Ummelen, F. Jeudy, V. Durin, G. Lopez-Diaz, L. Diaz-Pardo, R. Casiraghi, A. Agnus, G. Bouville, D. Langer, J. Ocker, B. Lavrijsen, R. Swagten, H. J. M. Ravelosona, D. |
description | In this study, we report on the analysis of the magnetic domain wall (DW) curvature due to magnetic field induced motion in Ta/CoFeB/MgO and Pt/Co/Pt wires with perpendicular magnetic anisotropy. In wires of 20 μm and 25 μm, a large edge pinning potential produces the anchoring of the DW ends to the wire edges, which is evidenced as a significant curvature of the DW front as it propagates. As the driving magnetic field is increased, the curvature reduces as a result of the system moving away from the creep regime of DW motion, which implies a weaker dependence of the DW dynamics on the interaction between the DW and the wire edge defects. A simple model is derived to describe the dependence of the DW curvature on the driving magnetic field and allows us to extract the parameter σE, which accounts for the strength of the edge pinning potential. The model describes well the systems with both weak and strong bulk pinning potentials like Ta/CoFeB/MgO and Pt/Co/Pt, respectively. This provides a means to quantify the effect of edge pinning induced DW curvature on magnetic DW dynamics. |
doi_str_mv | 10.1063/5.0010798 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0010798</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2434135761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-a9b2318501d881ddc7b222d669a6304dbc84eef2e9e4174aaabbdb7a76a941e43</originalsourceid><addsrcrecordid>eNqdkE9Lw0AUxBdRsFYPfoOAJ4XU_ZdNFk-lqBUqXvS8vOxu6pZ0N26Sln57U1rs3dMwjx_DvEHoluAJwYI9ZhOMCc5lcYZGg-YpI6Q4RyOMMUuFzMglumrb1WAzytgIPb3D0tvO6cSENTifbKGuE93HDXR9tInzptfWJOUu2brBW7O0SeO8d355jS4qqFt7c9Qx-np5_pzN08XH69tsukg1k6JLQZaUkSLDxBQFMUbnJaXUCCFBMMxNqQtubUWttJzkHADK0pQ55AIkJ5azMbo_5H5DrZro1hB3KoBT8-lC7W-YSjE8X2zIwN4d2CaGn962nVqFPvqhnqKcccKyXJBToo6hbaOt_mIJVvsdVaaOOw7sw4Ftteugc8H_D96EeAJVYyr2C8x4fxc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2434135761</pqid></control><display><type>article</type><title>Magnetic domain wall curvature induced by wire edge pinning</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP Journals (American Institute of Physics)</source><creator>Herrera Diez, L. ; Ummelen, F. ; Jeudy, V. ; Durin, G. ; Lopez-Diaz, L. ; Diaz-Pardo, R. ; Casiraghi, A. ; Agnus, G. ; Bouville, D. ; Langer, J. ; Ocker, B. ; Lavrijsen, R. ; Swagten, H. J. M. ; Ravelosona, D.</creator><creatorcontrib>Herrera Diez, L. ; Ummelen, F. ; Jeudy, V. ; Durin, G. ; Lopez-Diaz, L. ; Diaz-Pardo, R. ; Casiraghi, A. ; Agnus, G. ; Bouville, D. ; Langer, J. ; Ocker, B. ; Lavrijsen, R. ; Swagten, H. J. M. ; Ravelosona, D.</creatorcontrib><description>In this study, we report on the analysis of the magnetic domain wall (DW) curvature due to magnetic field induced motion in Ta/CoFeB/MgO and Pt/Co/Pt wires with perpendicular magnetic anisotropy. In wires of 20 μm and 25 μm, a large edge pinning potential produces the anchoring of the DW ends to the wire edges, which is evidenced as a significant curvature of the DW front as it propagates. As the driving magnetic field is increased, the curvature reduces as a result of the system moving away from the creep regime of DW motion, which implies a weaker dependence of the DW dynamics on the interaction between the DW and the wire edge defects. A simple model is derived to describe the dependence of the DW curvature on the driving magnetic field and allows us to extract the parameter σE, which accounts for the strength of the edge pinning potential. The model describes well the systems with both weak and strong bulk pinning potentials like Ta/CoFeB/MgO and Pt/Co/Pt, respectively. This provides a means to quantify the effect of edge pinning induced DW curvature on magnetic DW dynamics.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0010798</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Anchoring ; Applied physics ; Cobalt ; Curvature ; Dependence ; Domain walls ; Magnesium oxide ; Magnetic anisotropy ; Magnetic domains ; Magnetic fields ; Physics ; Pinning ; Platinum ; Tantalum ; Wire</subject><ispartof>Applied physics letters, 2020-08, Vol.117 (6)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-a9b2318501d881ddc7b222d669a6304dbc84eef2e9e4174aaabbdb7a76a941e43</citedby><cites>FETCH-LOGICAL-c396t-a9b2318501d881ddc7b222d669a6304dbc84eef2e9e4174aaabbdb7a76a941e43</cites><orcidid>0000-0002-6319-8259 ; 0000-0002-7019-2234 ; 0000-0002-2058-4272 ; 0000-0002-1209-5858 ; 0000-0002-9773-1875 ; 0000-0002-3546-5110</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0010798$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,782,784,795,885,27924,27925,76383</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02960638$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Herrera Diez, L.</creatorcontrib><creatorcontrib>Ummelen, F.</creatorcontrib><creatorcontrib>Jeudy, V.</creatorcontrib><creatorcontrib>Durin, G.</creatorcontrib><creatorcontrib>Lopez-Diaz, L.</creatorcontrib><creatorcontrib>Diaz-Pardo, R.</creatorcontrib><creatorcontrib>Casiraghi, A.</creatorcontrib><creatorcontrib>Agnus, G.</creatorcontrib><creatorcontrib>Bouville, D.</creatorcontrib><creatorcontrib>Langer, J.</creatorcontrib><creatorcontrib>Ocker, B.</creatorcontrib><creatorcontrib>Lavrijsen, R.</creatorcontrib><creatorcontrib>Swagten, H. J. M.</creatorcontrib><creatorcontrib>Ravelosona, D.</creatorcontrib><title>Magnetic domain wall curvature induced by wire edge pinning</title><title>Applied physics letters</title><description>In this study, we report on the analysis of the magnetic domain wall (DW) curvature due to magnetic field induced motion in Ta/CoFeB/MgO and Pt/Co/Pt wires with perpendicular magnetic anisotropy. In wires of 20 μm and 25 μm, a large edge pinning potential produces the anchoring of the DW ends to the wire edges, which is evidenced as a significant curvature of the DW front as it propagates. As the driving magnetic field is increased, the curvature reduces as a result of the system moving away from the creep regime of DW motion, which implies a weaker dependence of the DW dynamics on the interaction between the DW and the wire edge defects. A simple model is derived to describe the dependence of the DW curvature on the driving magnetic field and allows us to extract the parameter σE, which accounts for the strength of the edge pinning potential. The model describes well the systems with both weak and strong bulk pinning potentials like Ta/CoFeB/MgO and Pt/Co/Pt, respectively. This provides a means to quantify the effect of edge pinning induced DW curvature on magnetic DW dynamics.</description><subject>Anchoring</subject><subject>Applied physics</subject><subject>Cobalt</subject><subject>Curvature</subject><subject>Dependence</subject><subject>Domain walls</subject><subject>Magnesium oxide</subject><subject>Magnetic anisotropy</subject><subject>Magnetic domains</subject><subject>Magnetic fields</subject><subject>Physics</subject><subject>Pinning</subject><subject>Platinum</subject><subject>Tantalum</subject><subject>Wire</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqdkE9Lw0AUxBdRsFYPfoOAJ4XU_ZdNFk-lqBUqXvS8vOxu6pZ0N26Sln57U1rs3dMwjx_DvEHoluAJwYI9ZhOMCc5lcYZGg-YpI6Q4RyOMMUuFzMglumrb1WAzytgIPb3D0tvO6cSENTifbKGuE93HDXR9tInzptfWJOUu2brBW7O0SeO8d355jS4qqFt7c9Qx-np5_pzN08XH69tsukg1k6JLQZaUkSLDxBQFMUbnJaXUCCFBMMxNqQtubUWttJzkHADK0pQ55AIkJ5azMbo_5H5DrZro1hB3KoBT8-lC7W-YSjE8X2zIwN4d2CaGn962nVqFPvqhnqKcccKyXJBToo6hbaOt_mIJVvsdVaaOOw7sw4Ftteugc8H_D96EeAJVYyr2C8x4fxc</recordid><startdate>20200810</startdate><enddate>20200810</enddate><creator>Herrera Diez, L.</creator><creator>Ummelen, F.</creator><creator>Jeudy, V.</creator><creator>Durin, G.</creator><creator>Lopez-Diaz, L.</creator><creator>Diaz-Pardo, R.</creator><creator>Casiraghi, A.</creator><creator>Agnus, G.</creator><creator>Bouville, D.</creator><creator>Langer, J.</creator><creator>Ocker, B.</creator><creator>Lavrijsen, R.</creator><creator>Swagten, H. J. M.</creator><creator>Ravelosona, D.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-6319-8259</orcidid><orcidid>https://orcid.org/0000-0002-7019-2234</orcidid><orcidid>https://orcid.org/0000-0002-2058-4272</orcidid><orcidid>https://orcid.org/0000-0002-1209-5858</orcidid><orcidid>https://orcid.org/0000-0002-9773-1875</orcidid><orcidid>https://orcid.org/0000-0002-3546-5110</orcidid></search><sort><creationdate>20200810</creationdate><title>Magnetic domain wall curvature induced by wire edge pinning</title><author>Herrera Diez, L. ; Ummelen, F. ; Jeudy, V. ; Durin, G. ; Lopez-Diaz, L. ; Diaz-Pardo, R. ; Casiraghi, A. ; Agnus, G. ; Bouville, D. ; Langer, J. ; Ocker, B. ; Lavrijsen, R. ; Swagten, H. J. M. ; Ravelosona, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-a9b2318501d881ddc7b222d669a6304dbc84eef2e9e4174aaabbdb7a76a941e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anchoring</topic><topic>Applied physics</topic><topic>Cobalt</topic><topic>Curvature</topic><topic>Dependence</topic><topic>Domain walls</topic><topic>Magnesium oxide</topic><topic>Magnetic anisotropy</topic><topic>Magnetic domains</topic><topic>Magnetic fields</topic><topic>Physics</topic><topic>Pinning</topic><topic>Platinum</topic><topic>Tantalum</topic><topic>Wire</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Herrera Diez, L.</creatorcontrib><creatorcontrib>Ummelen, F.</creatorcontrib><creatorcontrib>Jeudy, V.</creatorcontrib><creatorcontrib>Durin, G.</creatorcontrib><creatorcontrib>Lopez-Diaz, L.</creatorcontrib><creatorcontrib>Diaz-Pardo, R.</creatorcontrib><creatorcontrib>Casiraghi, A.</creatorcontrib><creatorcontrib>Agnus, G.</creatorcontrib><creatorcontrib>Bouville, D.</creatorcontrib><creatorcontrib>Langer, J.</creatorcontrib><creatorcontrib>Ocker, B.</creatorcontrib><creatorcontrib>Lavrijsen, R.</creatorcontrib><creatorcontrib>Swagten, H. J. M.</creatorcontrib><creatorcontrib>Ravelosona, D.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Herrera Diez, L.</au><au>Ummelen, F.</au><au>Jeudy, V.</au><au>Durin, G.</au><au>Lopez-Diaz, L.</au><au>Diaz-Pardo, R.</au><au>Casiraghi, A.</au><au>Agnus, G.</au><au>Bouville, D.</au><au>Langer, J.</au><au>Ocker, B.</au><au>Lavrijsen, R.</au><au>Swagten, H. J. M.</au><au>Ravelosona, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic domain wall curvature induced by wire edge pinning</atitle><jtitle>Applied physics letters</jtitle><date>2020-08-10</date><risdate>2020</risdate><volume>117</volume><issue>6</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>In this study, we report on the analysis of the magnetic domain wall (DW) curvature due to magnetic field induced motion in Ta/CoFeB/MgO and Pt/Co/Pt wires with perpendicular magnetic anisotropy. In wires of 20 μm and 25 μm, a large edge pinning potential produces the anchoring of the DW ends to the wire edges, which is evidenced as a significant curvature of the DW front as it propagates. As the driving magnetic field is increased, the curvature reduces as a result of the system moving away from the creep regime of DW motion, which implies a weaker dependence of the DW dynamics on the interaction between the DW and the wire edge defects. A simple model is derived to describe the dependence of the DW curvature on the driving magnetic field and allows us to extract the parameter σE, which accounts for the strength of the edge pinning potential. The model describes well the systems with both weak and strong bulk pinning potentials like Ta/CoFeB/MgO and Pt/Co/Pt, respectively. This provides a means to quantify the effect of edge pinning induced DW curvature on magnetic DW dynamics.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0010798</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-6319-8259</orcidid><orcidid>https://orcid.org/0000-0002-7019-2234</orcidid><orcidid>https://orcid.org/0000-0002-2058-4272</orcidid><orcidid>https://orcid.org/0000-0002-1209-5858</orcidid><orcidid>https://orcid.org/0000-0002-9773-1875</orcidid><orcidid>https://orcid.org/0000-0002-3546-5110</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2020-08, Vol.117 (6) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_crossref_primary_10_1063_5_0010798 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP Journals (American Institute of Physics) |
subjects | Anchoring Applied physics Cobalt Curvature Dependence Domain walls Magnesium oxide Magnetic anisotropy Magnetic domains Magnetic fields Physics Pinning Platinum Tantalum Wire |
title | Magnetic domain wall curvature induced by wire edge pinning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T00%3A39%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20domain%20wall%20curvature%20induced%20by%20wire%20edge%20pinning&rft.jtitle=Applied%20physics%20letters&rft.au=Herrera%20Diez,%20L.&rft.date=2020-08-10&rft.volume=117&rft.issue=6&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0010798&rft_dat=%3Cproquest_cross%3E2434135761%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c396t-a9b2318501d881ddc7b222d669a6304dbc84eef2e9e4174aaabbdb7a76a941e43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2434135761&rft_id=info:pmid/&rfr_iscdi=true |