Loading…

Reflectivity of solid and hollow microsphere composites and the effects of uniform and varying diameters

While solid and hollow microsphere composites have received significant attention as solar reflectors or selective emitters, the driving mechanisms for their optical properties remain relatively unclear. Here, we study the solar reflectivity in the 0.4–2.4 μm wavelength range of solid and hollow mic...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2020-08, Vol.128 (5)
Main Authors: Yu, Ziqi, Nie, Xiao, Yuksel, Anil, Lee, Jaeho
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c327t-45bf524033639c9e2e532beafb191c157f1eec8d032dd31c554bea9e44772cc03
cites cdi_FETCH-LOGICAL-c327t-45bf524033639c9e2e532beafb191c157f1eec8d032dd31c554bea9e44772cc03
container_end_page
container_issue 5
container_start_page
container_title Journal of applied physics
container_volume 128
creator Yu, Ziqi
Nie, Xiao
Yuksel, Anil
Lee, Jaeho
description While solid and hollow microsphere composites have received significant attention as solar reflectors or selective emitters, the driving mechanisms for their optical properties remain relatively unclear. Here, we study the solar reflectivity in the 0.4–2.4 μm wavelength range of solid and hollow microspheres with the diameter varying from 0.125 μm to 8 μm. SiO2 and TiO2 are considered as low- and high-refractive-index microsphere materials, respectively, and polydimethylsiloxane is considered as a polymer matrix. Based on the Mie theory and finite-difference time-domain simulations, our analysis shows that hollow microspheres with a thinner shell are more effective in scattering the light, compared to solid microspheres, and lead to a higher solar reflectivity. The high scattering efficiency, owing to the refractive-index contrast and large interface density, in hollow microspheres allows low-refractive-index materials to have a high solar reflectivity. When the diameter is uniform, 0.75 μm SiO2 hollow microspheres provide the largest solar reflectivity of 0.81. When the diameter is varying, the randomly distributed 0.5–1 μm SiO2 hollow microspheres provide the largest solar reflectivity of 0.84. The effect of varying diameter is characterized by strong backscattering in the electric field. These findings will guide optimal designs of microsphere composites and hierarchical materials for optical and thermal management systems.
doi_str_mv 10.1063/5.0015650
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0015650</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2430232014</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-45bf524033639c9e2e532beafb191c157f1eec8d032dd31c554bea9e44772cc03</originalsourceid><addsrcrecordid>eNqd0EtLAzEQAOAgCtbqwX8Q8KSwdZJsus1Rii8oCKLnsM1O3JTdzZqklf57tw_w7mkO882TkGsGEwZTcS8nAExOJZyQEYOZygop4ZSMADjLZqpQ5-QixtWA2EyoEanf0TZoktu4tKXe0ugbV9Gyq2jtm8b_0NaZ4GNfY0BqfNv76BLGvUg1UrR2KI-70nXnrA_tPrUpw9Z1X7RyZYsJQ7wkZ7ZsIl4d45h8Pj1-zF-yxdvz6_xhkRnBi5Tlcmklz0GIqVBGIUcp-BJLu2SKGSYLyxDNrALBq0owI2U-ZBXmeVFwY0CMyc2hbx_89xpj0iu_Dt0wUvNcABccWD6o24Pa3RYDWt0H1w47awZ690gt9fGRg7072GhcKpPz3f_wxoc_qPvKil_-84J2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2430232014</pqid></control><display><type>article</type><title>Reflectivity of solid and hollow microsphere composites and the effects of uniform and varying diameters</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Yu, Ziqi ; Nie, Xiao ; Yuksel, Anil ; Lee, Jaeho</creator><creatorcontrib>Yu, Ziqi ; Nie, Xiao ; Yuksel, Anil ; Lee, Jaeho</creatorcontrib><description>While solid and hollow microsphere composites have received significant attention as solar reflectors or selective emitters, the driving mechanisms for their optical properties remain relatively unclear. Here, we study the solar reflectivity in the 0.4–2.4 μm wavelength range of solid and hollow microspheres with the diameter varying from 0.125 μm to 8 μm. SiO2 and TiO2 are considered as low- and high-refractive-index microsphere materials, respectively, and polydimethylsiloxane is considered as a polymer matrix. Based on the Mie theory and finite-difference time-domain simulations, our analysis shows that hollow microspheres with a thinner shell are more effective in scattering the light, compared to solid microspheres, and lead to a higher solar reflectivity. The high scattering efficiency, owing to the refractive-index contrast and large interface density, in hollow microspheres allows low-refractive-index materials to have a high solar reflectivity. When the diameter is uniform, 0.75 μm SiO2 hollow microspheres provide the largest solar reflectivity of 0.81. When the diameter is varying, the randomly distributed 0.5–1 μm SiO2 hollow microspheres provide the largest solar reflectivity of 0.84. The effect of varying diameter is characterized by strong backscattering in the electric field. These findings will guide optimal designs of microsphere composites and hierarchical materials for optical and thermal management systems.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0015650</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Backscattering ; Composite materials ; Electric fields ; Emitters ; Finite difference time domain method ; Management systems ; Microspheres ; Mie scattering ; Optical properties ; Polydimethylsiloxane ; Reflectance ; Silicon dioxide ; Solar reflectors ; Thermal management ; Time domain analysis ; Titanium dioxide</subject><ispartof>Journal of applied physics, 2020-08, Vol.128 (5)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-45bf524033639c9e2e532beafb191c157f1eec8d032dd31c554bea9e44772cc03</citedby><cites>FETCH-LOGICAL-c327t-45bf524033639c9e2e532beafb191c157f1eec8d032dd31c554bea9e44772cc03</cites><orcidid>0000-0003-0062-4860 ; 0000-0001-6740-6433 ; 0000-0002-8391-5024 ; 0000-0002-2207-4399</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yu, Ziqi</creatorcontrib><creatorcontrib>Nie, Xiao</creatorcontrib><creatorcontrib>Yuksel, Anil</creatorcontrib><creatorcontrib>Lee, Jaeho</creatorcontrib><title>Reflectivity of solid and hollow microsphere composites and the effects of uniform and varying diameters</title><title>Journal of applied physics</title><description>While solid and hollow microsphere composites have received significant attention as solar reflectors or selective emitters, the driving mechanisms for their optical properties remain relatively unclear. Here, we study the solar reflectivity in the 0.4–2.4 μm wavelength range of solid and hollow microspheres with the diameter varying from 0.125 μm to 8 μm. SiO2 and TiO2 are considered as low- and high-refractive-index microsphere materials, respectively, and polydimethylsiloxane is considered as a polymer matrix. Based on the Mie theory and finite-difference time-domain simulations, our analysis shows that hollow microspheres with a thinner shell are more effective in scattering the light, compared to solid microspheres, and lead to a higher solar reflectivity. The high scattering efficiency, owing to the refractive-index contrast and large interface density, in hollow microspheres allows low-refractive-index materials to have a high solar reflectivity. When the diameter is uniform, 0.75 μm SiO2 hollow microspheres provide the largest solar reflectivity of 0.81. When the diameter is varying, the randomly distributed 0.5–1 μm SiO2 hollow microspheres provide the largest solar reflectivity of 0.84. The effect of varying diameter is characterized by strong backscattering in the electric field. These findings will guide optimal designs of microsphere composites and hierarchical materials for optical and thermal management systems.</description><subject>Applied physics</subject><subject>Backscattering</subject><subject>Composite materials</subject><subject>Electric fields</subject><subject>Emitters</subject><subject>Finite difference time domain method</subject><subject>Management systems</subject><subject>Microspheres</subject><subject>Mie scattering</subject><subject>Optical properties</subject><subject>Polydimethylsiloxane</subject><subject>Reflectance</subject><subject>Silicon dioxide</subject><subject>Solar reflectors</subject><subject>Thermal management</subject><subject>Time domain analysis</subject><subject>Titanium dioxide</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqd0EtLAzEQAOAgCtbqwX8Q8KSwdZJsus1Rii8oCKLnsM1O3JTdzZqklf57tw_w7mkO882TkGsGEwZTcS8nAExOJZyQEYOZygop4ZSMADjLZqpQ5-QixtWA2EyoEanf0TZoktu4tKXe0ugbV9Gyq2jtm8b_0NaZ4GNfY0BqfNv76BLGvUg1UrR2KI-70nXnrA_tPrUpw9Z1X7RyZYsJQ7wkZ7ZsIl4d45h8Pj1-zF-yxdvz6_xhkRnBi5Tlcmklz0GIqVBGIUcp-BJLu2SKGSYLyxDNrALBq0owI2U-ZBXmeVFwY0CMyc2hbx_89xpj0iu_Dt0wUvNcABccWD6o24Pa3RYDWt0H1w47awZ690gt9fGRg7072GhcKpPz3f_wxoc_qPvKil_-84J2</recordid><startdate>20200807</startdate><enddate>20200807</enddate><creator>Yu, Ziqi</creator><creator>Nie, Xiao</creator><creator>Yuksel, Anil</creator><creator>Lee, Jaeho</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0062-4860</orcidid><orcidid>https://orcid.org/0000-0001-6740-6433</orcidid><orcidid>https://orcid.org/0000-0002-8391-5024</orcidid><orcidid>https://orcid.org/0000-0002-2207-4399</orcidid></search><sort><creationdate>20200807</creationdate><title>Reflectivity of solid and hollow microsphere composites and the effects of uniform and varying diameters</title><author>Yu, Ziqi ; Nie, Xiao ; Yuksel, Anil ; Lee, Jaeho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-45bf524033639c9e2e532beafb191c157f1eec8d032dd31c554bea9e44772cc03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applied physics</topic><topic>Backscattering</topic><topic>Composite materials</topic><topic>Electric fields</topic><topic>Emitters</topic><topic>Finite difference time domain method</topic><topic>Management systems</topic><topic>Microspheres</topic><topic>Mie scattering</topic><topic>Optical properties</topic><topic>Polydimethylsiloxane</topic><topic>Reflectance</topic><topic>Silicon dioxide</topic><topic>Solar reflectors</topic><topic>Thermal management</topic><topic>Time domain analysis</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Ziqi</creatorcontrib><creatorcontrib>Nie, Xiao</creatorcontrib><creatorcontrib>Yuksel, Anil</creatorcontrib><creatorcontrib>Lee, Jaeho</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Ziqi</au><au>Nie, Xiao</au><au>Yuksel, Anil</au><au>Lee, Jaeho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reflectivity of solid and hollow microsphere composites and the effects of uniform and varying diameters</atitle><jtitle>Journal of applied physics</jtitle><date>2020-08-07</date><risdate>2020</risdate><volume>128</volume><issue>5</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>While solid and hollow microsphere composites have received significant attention as solar reflectors or selective emitters, the driving mechanisms for their optical properties remain relatively unclear. Here, we study the solar reflectivity in the 0.4–2.4 μm wavelength range of solid and hollow microspheres with the diameter varying from 0.125 μm to 8 μm. SiO2 and TiO2 are considered as low- and high-refractive-index microsphere materials, respectively, and polydimethylsiloxane is considered as a polymer matrix. Based on the Mie theory and finite-difference time-domain simulations, our analysis shows that hollow microspheres with a thinner shell are more effective in scattering the light, compared to solid microspheres, and lead to a higher solar reflectivity. The high scattering efficiency, owing to the refractive-index contrast and large interface density, in hollow microspheres allows low-refractive-index materials to have a high solar reflectivity. When the diameter is uniform, 0.75 μm SiO2 hollow microspheres provide the largest solar reflectivity of 0.81. When the diameter is varying, the randomly distributed 0.5–1 μm SiO2 hollow microspheres provide the largest solar reflectivity of 0.84. The effect of varying diameter is characterized by strong backscattering in the electric field. These findings will guide optimal designs of microsphere composites and hierarchical materials for optical and thermal management systems.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0015650</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-0062-4860</orcidid><orcidid>https://orcid.org/0000-0001-6740-6433</orcidid><orcidid>https://orcid.org/0000-0002-8391-5024</orcidid><orcidid>https://orcid.org/0000-0002-2207-4399</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2020-08, Vol.128 (5)
issn 0021-8979
1089-7550
language eng
recordid cdi_crossref_primary_10_1063_5_0015650
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Applied physics
Backscattering
Composite materials
Electric fields
Emitters
Finite difference time domain method
Management systems
Microspheres
Mie scattering
Optical properties
Polydimethylsiloxane
Reflectance
Silicon dioxide
Solar reflectors
Thermal management
Time domain analysis
Titanium dioxide
title Reflectivity of solid and hollow microsphere composites and the effects of uniform and varying diameters
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T01%3A32%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reflectivity%20of%20solid%20and%20hollow%20microsphere%20composites%20and%20the%20effects%20of%20uniform%20and%20varying%20diameters&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Yu,%20Ziqi&rft.date=2020-08-07&rft.volume=128&rft.issue=5&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0015650&rft_dat=%3Cproquest_cross%3E2430232014%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c327t-45bf524033639c9e2e532beafb191c157f1eec8d032dd31c554bea9e44772cc03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2430232014&rft_id=info:pmid/&rfr_iscdi=true