Loading…
Reflectivity of solid and hollow microsphere composites and the effects of uniform and varying diameters
While solid and hollow microsphere composites have received significant attention as solar reflectors or selective emitters, the driving mechanisms for their optical properties remain relatively unclear. Here, we study the solar reflectivity in the 0.4–2.4 μm wavelength range of solid and hollow mic...
Saved in:
Published in: | Journal of applied physics 2020-08, Vol.128 (5) |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c327t-45bf524033639c9e2e532beafb191c157f1eec8d032dd31c554bea9e44772cc03 |
---|---|
cites | cdi_FETCH-LOGICAL-c327t-45bf524033639c9e2e532beafb191c157f1eec8d032dd31c554bea9e44772cc03 |
container_end_page | |
container_issue | 5 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 128 |
creator | Yu, Ziqi Nie, Xiao Yuksel, Anil Lee, Jaeho |
description | While solid and hollow microsphere composites have received significant attention as solar reflectors or selective emitters, the driving mechanisms for their optical properties remain relatively unclear. Here, we study the solar reflectivity in the 0.4–2.4 μm wavelength range of solid and hollow microspheres with the diameter varying from 0.125 μm to 8 μm. SiO2 and TiO2 are considered as low- and high-refractive-index microsphere materials, respectively, and polydimethylsiloxane is considered as a polymer matrix. Based on the Mie theory and finite-difference time-domain simulations, our analysis shows that hollow microspheres with a thinner shell are more effective in scattering the light, compared to solid microspheres, and lead to a higher solar reflectivity. The high scattering efficiency, owing to the refractive-index contrast and large interface density, in hollow microspheres allows low-refractive-index materials to have a high solar reflectivity. When the diameter is uniform, 0.75 μm SiO2 hollow microspheres provide the largest solar reflectivity of 0.81. When the diameter is varying, the randomly distributed 0.5–1 μm SiO2 hollow microspheres provide the largest solar reflectivity of 0.84. The effect of varying diameter is characterized by strong backscattering in the electric field. These findings will guide optimal designs of microsphere composites and hierarchical materials for optical and thermal management systems. |
doi_str_mv | 10.1063/5.0015650 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0015650</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2430232014</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-45bf524033639c9e2e532beafb191c157f1eec8d032dd31c554bea9e44772cc03</originalsourceid><addsrcrecordid>eNqd0EtLAzEQAOAgCtbqwX8Q8KSwdZJsus1Rii8oCKLnsM1O3JTdzZqklf57tw_w7mkO882TkGsGEwZTcS8nAExOJZyQEYOZygop4ZSMADjLZqpQ5-QixtWA2EyoEanf0TZoktu4tKXe0ugbV9Gyq2jtm8b_0NaZ4GNfY0BqfNv76BLGvUg1UrR2KI-70nXnrA_tPrUpw9Z1X7RyZYsJQ7wkZ7ZsIl4d45h8Pj1-zF-yxdvz6_xhkRnBi5Tlcmklz0GIqVBGIUcp-BJLu2SKGSYLyxDNrALBq0owI2U-ZBXmeVFwY0CMyc2hbx_89xpj0iu_Dt0wUvNcABccWD6o24Pa3RYDWt0H1w47awZ690gt9fGRg7072GhcKpPz3f_wxoc_qPvKil_-84J2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2430232014</pqid></control><display><type>article</type><title>Reflectivity of solid and hollow microsphere composites and the effects of uniform and varying diameters</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Yu, Ziqi ; Nie, Xiao ; Yuksel, Anil ; Lee, Jaeho</creator><creatorcontrib>Yu, Ziqi ; Nie, Xiao ; Yuksel, Anil ; Lee, Jaeho</creatorcontrib><description>While solid and hollow microsphere composites have received significant attention as solar reflectors or selective emitters, the driving mechanisms for their optical properties remain relatively unclear. Here, we study the solar reflectivity in the 0.4–2.4 μm wavelength range of solid and hollow microspheres with the diameter varying from 0.125 μm to 8 μm. SiO2 and TiO2 are considered as low- and high-refractive-index microsphere materials, respectively, and polydimethylsiloxane is considered as a polymer matrix. Based on the Mie theory and finite-difference time-domain simulations, our analysis shows that hollow microspheres with a thinner shell are more effective in scattering the light, compared to solid microspheres, and lead to a higher solar reflectivity. The high scattering efficiency, owing to the refractive-index contrast and large interface density, in hollow microspheres allows low-refractive-index materials to have a high solar reflectivity. When the diameter is uniform, 0.75 μm SiO2 hollow microspheres provide the largest solar reflectivity of 0.81. When the diameter is varying, the randomly distributed 0.5–1 μm SiO2 hollow microspheres provide the largest solar reflectivity of 0.84. The effect of varying diameter is characterized by strong backscattering in the electric field. These findings will guide optimal designs of microsphere composites and hierarchical materials for optical and thermal management systems.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0015650</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Backscattering ; Composite materials ; Electric fields ; Emitters ; Finite difference time domain method ; Management systems ; Microspheres ; Mie scattering ; Optical properties ; Polydimethylsiloxane ; Reflectance ; Silicon dioxide ; Solar reflectors ; Thermal management ; Time domain analysis ; Titanium dioxide</subject><ispartof>Journal of applied physics, 2020-08, Vol.128 (5)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-45bf524033639c9e2e532beafb191c157f1eec8d032dd31c554bea9e44772cc03</citedby><cites>FETCH-LOGICAL-c327t-45bf524033639c9e2e532beafb191c157f1eec8d032dd31c554bea9e44772cc03</cites><orcidid>0000-0003-0062-4860 ; 0000-0001-6740-6433 ; 0000-0002-8391-5024 ; 0000-0002-2207-4399</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yu, Ziqi</creatorcontrib><creatorcontrib>Nie, Xiao</creatorcontrib><creatorcontrib>Yuksel, Anil</creatorcontrib><creatorcontrib>Lee, Jaeho</creatorcontrib><title>Reflectivity of solid and hollow microsphere composites and the effects of uniform and varying diameters</title><title>Journal of applied physics</title><description>While solid and hollow microsphere composites have received significant attention as solar reflectors or selective emitters, the driving mechanisms for their optical properties remain relatively unclear. Here, we study the solar reflectivity in the 0.4–2.4 μm wavelength range of solid and hollow microspheres with the diameter varying from 0.125 μm to 8 μm. SiO2 and TiO2 are considered as low- and high-refractive-index microsphere materials, respectively, and polydimethylsiloxane is considered as a polymer matrix. Based on the Mie theory and finite-difference time-domain simulations, our analysis shows that hollow microspheres with a thinner shell are more effective in scattering the light, compared to solid microspheres, and lead to a higher solar reflectivity. The high scattering efficiency, owing to the refractive-index contrast and large interface density, in hollow microspheres allows low-refractive-index materials to have a high solar reflectivity. When the diameter is uniform, 0.75 μm SiO2 hollow microspheres provide the largest solar reflectivity of 0.81. When the diameter is varying, the randomly distributed 0.5–1 μm SiO2 hollow microspheres provide the largest solar reflectivity of 0.84. The effect of varying diameter is characterized by strong backscattering in the electric field. These findings will guide optimal designs of microsphere composites and hierarchical materials for optical and thermal management systems.</description><subject>Applied physics</subject><subject>Backscattering</subject><subject>Composite materials</subject><subject>Electric fields</subject><subject>Emitters</subject><subject>Finite difference time domain method</subject><subject>Management systems</subject><subject>Microspheres</subject><subject>Mie scattering</subject><subject>Optical properties</subject><subject>Polydimethylsiloxane</subject><subject>Reflectance</subject><subject>Silicon dioxide</subject><subject>Solar reflectors</subject><subject>Thermal management</subject><subject>Time domain analysis</subject><subject>Titanium dioxide</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqd0EtLAzEQAOAgCtbqwX8Q8KSwdZJsus1Rii8oCKLnsM1O3JTdzZqklf57tw_w7mkO882TkGsGEwZTcS8nAExOJZyQEYOZygop4ZSMADjLZqpQ5-QixtWA2EyoEanf0TZoktu4tKXe0ugbV9Gyq2jtm8b_0NaZ4GNfY0BqfNv76BLGvUg1UrR2KI-70nXnrA_tPrUpw9Z1X7RyZYsJQ7wkZ7ZsIl4d45h8Pj1-zF-yxdvz6_xhkRnBi5Tlcmklz0GIqVBGIUcp-BJLu2SKGSYLyxDNrALBq0owI2U-ZBXmeVFwY0CMyc2hbx_89xpj0iu_Dt0wUvNcABccWD6o24Pa3RYDWt0H1w47awZ690gt9fGRg7072GhcKpPz3f_wxoc_qPvKil_-84J2</recordid><startdate>20200807</startdate><enddate>20200807</enddate><creator>Yu, Ziqi</creator><creator>Nie, Xiao</creator><creator>Yuksel, Anil</creator><creator>Lee, Jaeho</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0062-4860</orcidid><orcidid>https://orcid.org/0000-0001-6740-6433</orcidid><orcidid>https://orcid.org/0000-0002-8391-5024</orcidid><orcidid>https://orcid.org/0000-0002-2207-4399</orcidid></search><sort><creationdate>20200807</creationdate><title>Reflectivity of solid and hollow microsphere composites and the effects of uniform and varying diameters</title><author>Yu, Ziqi ; Nie, Xiao ; Yuksel, Anil ; Lee, Jaeho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-45bf524033639c9e2e532beafb191c157f1eec8d032dd31c554bea9e44772cc03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applied physics</topic><topic>Backscattering</topic><topic>Composite materials</topic><topic>Electric fields</topic><topic>Emitters</topic><topic>Finite difference time domain method</topic><topic>Management systems</topic><topic>Microspheres</topic><topic>Mie scattering</topic><topic>Optical properties</topic><topic>Polydimethylsiloxane</topic><topic>Reflectance</topic><topic>Silicon dioxide</topic><topic>Solar reflectors</topic><topic>Thermal management</topic><topic>Time domain analysis</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Ziqi</creatorcontrib><creatorcontrib>Nie, Xiao</creatorcontrib><creatorcontrib>Yuksel, Anil</creatorcontrib><creatorcontrib>Lee, Jaeho</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Ziqi</au><au>Nie, Xiao</au><au>Yuksel, Anil</au><au>Lee, Jaeho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reflectivity of solid and hollow microsphere composites and the effects of uniform and varying diameters</atitle><jtitle>Journal of applied physics</jtitle><date>2020-08-07</date><risdate>2020</risdate><volume>128</volume><issue>5</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>While solid and hollow microsphere composites have received significant attention as solar reflectors or selective emitters, the driving mechanisms for their optical properties remain relatively unclear. Here, we study the solar reflectivity in the 0.4–2.4 μm wavelength range of solid and hollow microspheres with the diameter varying from 0.125 μm to 8 μm. SiO2 and TiO2 are considered as low- and high-refractive-index microsphere materials, respectively, and polydimethylsiloxane is considered as a polymer matrix. Based on the Mie theory and finite-difference time-domain simulations, our analysis shows that hollow microspheres with a thinner shell are more effective in scattering the light, compared to solid microspheres, and lead to a higher solar reflectivity. The high scattering efficiency, owing to the refractive-index contrast and large interface density, in hollow microspheres allows low-refractive-index materials to have a high solar reflectivity. When the diameter is uniform, 0.75 μm SiO2 hollow microspheres provide the largest solar reflectivity of 0.81. When the diameter is varying, the randomly distributed 0.5–1 μm SiO2 hollow microspheres provide the largest solar reflectivity of 0.84. The effect of varying diameter is characterized by strong backscattering in the electric field. These findings will guide optimal designs of microsphere composites and hierarchical materials for optical and thermal management systems.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0015650</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-0062-4860</orcidid><orcidid>https://orcid.org/0000-0001-6740-6433</orcidid><orcidid>https://orcid.org/0000-0002-8391-5024</orcidid><orcidid>https://orcid.org/0000-0002-2207-4399</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2020-08, Vol.128 (5) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_crossref_primary_10_1063_5_0015650 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Applied physics Backscattering Composite materials Electric fields Emitters Finite difference time domain method Management systems Microspheres Mie scattering Optical properties Polydimethylsiloxane Reflectance Silicon dioxide Solar reflectors Thermal management Time domain analysis Titanium dioxide |
title | Reflectivity of solid and hollow microsphere composites and the effects of uniform and varying diameters |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T01%3A32%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reflectivity%20of%20solid%20and%20hollow%20microsphere%20composites%20and%20the%20effects%20of%20uniform%20and%20varying%20diameters&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Yu,%20Ziqi&rft.date=2020-08-07&rft.volume=128&rft.issue=5&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0015650&rft_dat=%3Cproquest_cross%3E2430232014%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c327t-45bf524033639c9e2e532beafb191c157f1eec8d032dd31c554bea9e44772cc03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2430232014&rft_id=info:pmid/&rfr_iscdi=true |