Loading…
Machine learning approaches for the prediction of materials properties
We give here a brief overview of the use of machine learning (ML) in our field, for chemists and materials scientists with no experience with these techniques. We illustrate the workflow of ML for computational studies of materials, with a specific interest in the prediction of materials properties....
Saved in:
Published in: | APL materials 2020-08, Vol.8 (8), p.080701-080701-10 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c500t-59195258e6d5c7f808c01d26587b74c442ee9d6004389537ad83a2fdfca988773 |
---|---|
cites | cdi_FETCH-LOGICAL-c500t-59195258e6d5c7f808c01d26587b74c442ee9d6004389537ad83a2fdfca988773 |
container_end_page | 080701-10 |
container_issue | 8 |
container_start_page | 080701 |
container_title | APL materials |
container_volume | 8 |
creator | Chibani, Siwar Coudert, François-Xavier |
description | We give here a brief overview of the use of machine learning (ML) in our field, for chemists and materials scientists with no experience with these techniques. We illustrate the workflow of ML for computational studies of materials, with a specific interest in the prediction of materials properties. We present concisely the fundamental ideas of ML, and for each stage of the workflow, we give examples of the possibilities and questions to be considered in implementing ML-based modeling. |
doi_str_mv | 10.1063/5.0018384 |
format | article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0018384</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d60161f0cb384a89aed2032c33b43daf</doaj_id><sourcerecordid>oai_HAL_hal_02911837v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c500t-59195258e6d5c7f808c01d26587b74c442ee9d6004389537ad83a2fdfca988773</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhhdRsNQe_Ad7VVjNxyabPZZibaHiRcFbmOajTdlulmQp-O9NbWkVwdMML888DG-W3WL0gBGnj-wBISyoKC-yAcGcF4ySj8sf-3U2inGDEoUoFTUfZNMXUGvXmrwxEFrXrnLouuBTaGJufcj7tcm7YLRTvfNt7m2-hd4EB01Mue9M6J2JN9mVTYkZHecwe58-vU1mxeL1eT4ZLwrFEOoLVuOaESYM10xVViChENaEM1Etq1KVJTGm1hyhMn3HaAVaUCBWWwW1EFVFh9n84NUeNrILbgvhU3pw8jvwYSUhPaQaI5MGc2yRWqZCQNRgNEGUKEqXJdVgk-vu4FpD80s1Gy_kPkOkxqnOaofPrAo-xmDs6QAjue9eMnnsPrH3BzYq18O-tRO88-EMyk7b_-C_5i9lBJCF</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Machine learning approaches for the prediction of materials properties</title><source>AIP Open Access Journals</source><creator>Chibani, Siwar ; Coudert, François-Xavier</creator><creatorcontrib>Chibani, Siwar ; Coudert, François-Xavier</creatorcontrib><description>We give here a brief overview of the use of machine learning (ML) in our field, for chemists and materials scientists with no experience with these techniques. We illustrate the workflow of ML for computational studies of materials, with a specific interest in the prediction of materials properties. We present concisely the fundamental ideas of ML, and for each stage of the workflow, we give examples of the possibilities and questions to be considered in implementing ML-based modeling.</description><identifier>ISSN: 2166-532X</identifier><identifier>EISSN: 2166-532X</identifier><identifier>DOI: 10.1063/5.0018384</identifier><identifier>CODEN: AMPADS</identifier><language>eng</language><publisher>AIP Publishing</publisher><subject>Chemical Sciences ; Material chemistry ; or physical chemistry ; Theoretical and</subject><ispartof>APL materials, 2020-08, Vol.8 (8), p.080701-080701-10</ispartof><rights>Author(s)</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c500t-59195258e6d5c7f808c01d26587b74c442ee9d6004389537ad83a2fdfca988773</citedby><cites>FETCH-LOGICAL-c500t-59195258e6d5c7f808c01d26587b74c442ee9d6004389537ad83a2fdfca988773</cites><orcidid>0000-0002-4900-5684 ; 0000-0001-5318-3910</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apm/article-lookup/doi/10.1063/5.0018384$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,882,27871,27905,27906,76157</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02911837$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Chibani, Siwar</creatorcontrib><creatorcontrib>Coudert, François-Xavier</creatorcontrib><title>Machine learning approaches for the prediction of materials properties</title><title>APL materials</title><description>We give here a brief overview of the use of machine learning (ML) in our field, for chemists and materials scientists with no experience with these techniques. We illustrate the workflow of ML for computational studies of materials, with a specific interest in the prediction of materials properties. We present concisely the fundamental ideas of ML, and for each stage of the workflow, we give examples of the possibilities and questions to be considered in implementing ML-based modeling.</description><subject>Chemical Sciences</subject><subject>Material chemistry</subject><subject>or physical chemistry</subject><subject>Theoretical and</subject><issn>2166-532X</issn><issn>2166-532X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AJDQP</sourceid><sourceid>DOA</sourceid><recordid>eNp9kE1LAzEQhhdRsNQe_Ad7VVjNxyabPZZibaHiRcFbmOajTdlulmQp-O9NbWkVwdMML888DG-W3WL0gBGnj-wBISyoKC-yAcGcF4ySj8sf-3U2inGDEoUoFTUfZNMXUGvXmrwxEFrXrnLouuBTaGJufcj7tcm7YLRTvfNt7m2-hd4EB01Mue9M6J2JN9mVTYkZHecwe58-vU1mxeL1eT4ZLwrFEOoLVuOaESYM10xVViChENaEM1Etq1KVJTGm1hyhMn3HaAVaUCBWWwW1EFVFh9n84NUeNrILbgvhU3pw8jvwYSUhPaQaI5MGc2yRWqZCQNRgNEGUKEqXJdVgk-vu4FpD80s1Gy_kPkOkxqnOaofPrAo-xmDs6QAjue9eMnnsPrH3BzYq18O-tRO88-EMyk7b_-C_5i9lBJCF</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Chibani, Siwar</creator><creator>Coudert, François-Xavier</creator><general>AIP Publishing</general><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4900-5684</orcidid><orcidid>https://orcid.org/0000-0001-5318-3910</orcidid></search><sort><creationdate>20200801</creationdate><title>Machine learning approaches for the prediction of materials properties</title><author>Chibani, Siwar ; Coudert, François-Xavier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c500t-59195258e6d5c7f808c01d26587b74c442ee9d6004389537ad83a2fdfca988773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemical Sciences</topic><topic>Material chemistry</topic><topic>or physical chemistry</topic><topic>Theoretical and</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chibani, Siwar</creatorcontrib><creatorcontrib>Coudert, François-Xavier</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>APL materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chibani, Siwar</au><au>Coudert, François-Xavier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning approaches for the prediction of materials properties</atitle><jtitle>APL materials</jtitle><date>2020-08-01</date><risdate>2020</risdate><volume>8</volume><issue>8</issue><spage>080701</spage><epage>080701-10</epage><pages>080701-080701-10</pages><issn>2166-532X</issn><eissn>2166-532X</eissn><coden>AMPADS</coden><abstract>We give here a brief overview of the use of machine learning (ML) in our field, for chemists and materials scientists with no experience with these techniques. We illustrate the workflow of ML for computational studies of materials, with a specific interest in the prediction of materials properties. We present concisely the fundamental ideas of ML, and for each stage of the workflow, we give examples of the possibilities and questions to be considered in implementing ML-based modeling.</abstract><pub>AIP Publishing</pub><doi>10.1063/5.0018384</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4900-5684</orcidid><orcidid>https://orcid.org/0000-0001-5318-3910</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2166-532X |
ispartof | APL materials, 2020-08, Vol.8 (8), p.080701-080701-10 |
issn | 2166-532X 2166-532X |
language | eng |
recordid | cdi_crossref_primary_10_1063_5_0018384 |
source | AIP Open Access Journals |
subjects | Chemical Sciences Material chemistry or physical chemistry Theoretical and |
title | Machine learning approaches for the prediction of materials properties |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T00%3A40%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20approaches%20for%20the%20prediction%20of%20materials%20properties&rft.jtitle=APL%20materials&rft.au=Chibani,%20Siwar&rft.date=2020-08-01&rft.volume=8&rft.issue=8&rft.spage=080701&rft.epage=080701-10&rft.pages=080701-080701-10&rft.issn=2166-532X&rft.eissn=2166-532X&rft.coden=AMPADS&rft_id=info:doi/10.1063/5.0018384&rft_dat=%3Chal_cross%3Eoai_HAL_hal_02911837v1%3C/hal_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c500t-59195258e6d5c7f808c01d26587b74c442ee9d6004389537ad83a2fdfca988773%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |