Loading…

Machine learning approaches for the prediction of materials properties

We give here a brief overview of the use of machine learning (ML) in our field, for chemists and materials scientists with no experience with these techniques. We illustrate the workflow of ML for computational studies of materials, with a specific interest in the prediction of materials properties....

Full description

Saved in:
Bibliographic Details
Published in:APL materials 2020-08, Vol.8 (8), p.080701-080701-10
Main Authors: Chibani, Siwar, Coudert, François-Xavier
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c500t-59195258e6d5c7f808c01d26587b74c442ee9d6004389537ad83a2fdfca988773
cites cdi_FETCH-LOGICAL-c500t-59195258e6d5c7f808c01d26587b74c442ee9d6004389537ad83a2fdfca988773
container_end_page 080701-10
container_issue 8
container_start_page 080701
container_title APL materials
container_volume 8
creator Chibani, Siwar
Coudert, François-Xavier
description We give here a brief overview of the use of machine learning (ML) in our field, for chemists and materials scientists with no experience with these techniques. We illustrate the workflow of ML for computational studies of materials, with a specific interest in the prediction of materials properties. We present concisely the fundamental ideas of ML, and for each stage of the workflow, we give examples of the possibilities and questions to be considered in implementing ML-based modeling.
doi_str_mv 10.1063/5.0018384
format article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0018384</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d60161f0cb384a89aed2032c33b43daf</doaj_id><sourcerecordid>oai_HAL_hal_02911837v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c500t-59195258e6d5c7f808c01d26587b74c442ee9d6004389537ad83a2fdfca988773</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhhdRsNQe_Ad7VVjNxyabPZZibaHiRcFbmOajTdlulmQp-O9NbWkVwdMML888DG-W3WL0gBGnj-wBISyoKC-yAcGcF4ySj8sf-3U2inGDEoUoFTUfZNMXUGvXmrwxEFrXrnLouuBTaGJufcj7tcm7YLRTvfNt7m2-hd4EB01Mue9M6J2JN9mVTYkZHecwe58-vU1mxeL1eT4ZLwrFEOoLVuOaESYM10xVViChENaEM1Etq1KVJTGm1hyhMn3HaAVaUCBWWwW1EFVFh9n84NUeNrILbgvhU3pw8jvwYSUhPaQaI5MGc2yRWqZCQNRgNEGUKEqXJdVgk-vu4FpD80s1Gy_kPkOkxqnOaofPrAo-xmDs6QAjue9eMnnsPrH3BzYq18O-tRO88-EMyk7b_-C_5i9lBJCF</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Machine learning approaches for the prediction of materials properties</title><source>AIP Open Access Journals</source><creator>Chibani, Siwar ; Coudert, François-Xavier</creator><creatorcontrib>Chibani, Siwar ; Coudert, François-Xavier</creatorcontrib><description>We give here a brief overview of the use of machine learning (ML) in our field, for chemists and materials scientists with no experience with these techniques. We illustrate the workflow of ML for computational studies of materials, with a specific interest in the prediction of materials properties. We present concisely the fundamental ideas of ML, and for each stage of the workflow, we give examples of the possibilities and questions to be considered in implementing ML-based modeling.</description><identifier>ISSN: 2166-532X</identifier><identifier>EISSN: 2166-532X</identifier><identifier>DOI: 10.1063/5.0018384</identifier><identifier>CODEN: AMPADS</identifier><language>eng</language><publisher>AIP Publishing</publisher><subject>Chemical Sciences ; Material chemistry ; or physical chemistry ; Theoretical and</subject><ispartof>APL materials, 2020-08, Vol.8 (8), p.080701-080701-10</ispartof><rights>Author(s)</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c500t-59195258e6d5c7f808c01d26587b74c442ee9d6004389537ad83a2fdfca988773</citedby><cites>FETCH-LOGICAL-c500t-59195258e6d5c7f808c01d26587b74c442ee9d6004389537ad83a2fdfca988773</cites><orcidid>0000-0002-4900-5684 ; 0000-0001-5318-3910</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apm/article-lookup/doi/10.1063/5.0018384$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,882,27871,27905,27906,76157</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02911837$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Chibani, Siwar</creatorcontrib><creatorcontrib>Coudert, François-Xavier</creatorcontrib><title>Machine learning approaches for the prediction of materials properties</title><title>APL materials</title><description>We give here a brief overview of the use of machine learning (ML) in our field, for chemists and materials scientists with no experience with these techniques. We illustrate the workflow of ML for computational studies of materials, with a specific interest in the prediction of materials properties. We present concisely the fundamental ideas of ML, and for each stage of the workflow, we give examples of the possibilities and questions to be considered in implementing ML-based modeling.</description><subject>Chemical Sciences</subject><subject>Material chemistry</subject><subject>or physical chemistry</subject><subject>Theoretical and</subject><issn>2166-532X</issn><issn>2166-532X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AJDQP</sourceid><sourceid>DOA</sourceid><recordid>eNp9kE1LAzEQhhdRsNQe_Ad7VVjNxyabPZZibaHiRcFbmOajTdlulmQp-O9NbWkVwdMML888DG-W3WL0gBGnj-wBISyoKC-yAcGcF4ySj8sf-3U2inGDEoUoFTUfZNMXUGvXmrwxEFrXrnLouuBTaGJufcj7tcm7YLRTvfNt7m2-hd4EB01Mue9M6J2JN9mVTYkZHecwe58-vU1mxeL1eT4ZLwrFEOoLVuOaESYM10xVViChENaEM1Etq1KVJTGm1hyhMn3HaAVaUCBWWwW1EFVFh9n84NUeNrILbgvhU3pw8jvwYSUhPaQaI5MGc2yRWqZCQNRgNEGUKEqXJdVgk-vu4FpD80s1Gy_kPkOkxqnOaofPrAo-xmDs6QAjue9eMnnsPrH3BzYq18O-tRO88-EMyk7b_-C_5i9lBJCF</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Chibani, Siwar</creator><creator>Coudert, François-Xavier</creator><general>AIP Publishing</general><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4900-5684</orcidid><orcidid>https://orcid.org/0000-0001-5318-3910</orcidid></search><sort><creationdate>20200801</creationdate><title>Machine learning approaches for the prediction of materials properties</title><author>Chibani, Siwar ; Coudert, François-Xavier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c500t-59195258e6d5c7f808c01d26587b74c442ee9d6004389537ad83a2fdfca988773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemical Sciences</topic><topic>Material chemistry</topic><topic>or physical chemistry</topic><topic>Theoretical and</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chibani, Siwar</creatorcontrib><creatorcontrib>Coudert, François-Xavier</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>APL materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chibani, Siwar</au><au>Coudert, François-Xavier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning approaches for the prediction of materials properties</atitle><jtitle>APL materials</jtitle><date>2020-08-01</date><risdate>2020</risdate><volume>8</volume><issue>8</issue><spage>080701</spage><epage>080701-10</epage><pages>080701-080701-10</pages><issn>2166-532X</issn><eissn>2166-532X</eissn><coden>AMPADS</coden><abstract>We give here a brief overview of the use of machine learning (ML) in our field, for chemists and materials scientists with no experience with these techniques. We illustrate the workflow of ML for computational studies of materials, with a specific interest in the prediction of materials properties. We present concisely the fundamental ideas of ML, and for each stage of the workflow, we give examples of the possibilities and questions to be considered in implementing ML-based modeling.</abstract><pub>AIP Publishing</pub><doi>10.1063/5.0018384</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4900-5684</orcidid><orcidid>https://orcid.org/0000-0001-5318-3910</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2166-532X
ispartof APL materials, 2020-08, Vol.8 (8), p.080701-080701-10
issn 2166-532X
2166-532X
language eng
recordid cdi_crossref_primary_10_1063_5_0018384
source AIP Open Access Journals
subjects Chemical Sciences
Material chemistry
or physical chemistry
Theoretical and
title Machine learning approaches for the prediction of materials properties
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T00%3A40%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20approaches%20for%20the%20prediction%20of%20materials%20properties&rft.jtitle=APL%20materials&rft.au=Chibani,%20Siwar&rft.date=2020-08-01&rft.volume=8&rft.issue=8&rft.spage=080701&rft.epage=080701-10&rft.pages=080701-080701-10&rft.issn=2166-532X&rft.eissn=2166-532X&rft.coden=AMPADS&rft_id=info:doi/10.1063/5.0018384&rft_dat=%3Chal_cross%3Eoai_HAL_hal_02911837v1%3C/hal_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c500t-59195258e6d5c7f808c01d26587b74c442ee9d6004389537ad83a2fdfca988773%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true