Loading…

A common parametrization for finite mode Gaussian states, their symmetries, and associated contractions with some applications

Let Γ(H) be the boson Fock space over a finite dimensional Hilbert space H. It is shown that every Gaussian symmetry admits a Klauder–Bargmann integral representation in terms of coherent states. Furthermore, Gaussian states, Gaussian symmetries, and second quantization contractions belong to a weak...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mathematical physics 2021-02, Vol.62 (2)
Main Authors: John, Tiju Cherian, Parthasarathy, K. R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c327t-2eef639d36e5aa6269a8e7f551707c5f18007081e39cb2ed6596be7f30628c793
cites cdi_FETCH-LOGICAL-c327t-2eef639d36e5aa6269a8e7f551707c5f18007081e39cb2ed6596be7f30628c793
container_end_page
container_issue 2
container_start_page
container_title Journal of mathematical physics
container_volume 62
creator John, Tiju Cherian
Parthasarathy, K. R.
description Let Γ(H) be the boson Fock space over a finite dimensional Hilbert space H. It is shown that every Gaussian symmetry admits a Klauder–Bargmann integral representation in terms of coherent states. Furthermore, Gaussian states, Gaussian symmetries, and second quantization contractions belong to a weakly closed self-adjoint semigroup E2(H) of bounded operators in Γ(H). This yields a common parametrization for these operators. It is shown that the new parametrization for Gaussian states is a fruitful alternative to the customary parametrization by position–momentum mean vectors and covariance matrices. This leads to a rich harvest of corollaries: (i) every Gaussian state ρ admits a factorization ρ=Z1†Z1, where Z1 is an element of E2(H) and has the form Z1=cΓ(P)exp∑r=1nλrar+∑r,s=1nαrsaras on the dense linear manifold generated by all exponential vectors, where c is a positive scalar, Γ(P) is the second quantization of a positive contractive operator P in H, ar, 1 ≤ r ≤ n, are the annihilation operators corresponding to the n different modes in Γ(H), λr∈C, and [αrs] is a symmetric matrix in Mn(C); (ii) an explicit particle basis expansion of an arbitrary mean zero pure Gaussian state vector along with a density matrix formula for a general Gaussian state in terms of its E2(H)-parameters; (iii) a class of examples of pure n-mode Gaussian states that are completely entangled; (iv) tomography of an unknown Gaussian state in Γ(Cn) by the estimation of its E2(Cn) parameters using O(n2) measurements with a finite number of outcomes.
doi_str_mv 10.1063/5.0019413
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0019413</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2492102232</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-2eef639d36e5aa6269a8e7f551707c5f18007081e39cb2ed6596be7f30628c793</originalsourceid><addsrcrecordid>eNp90MtKAzEUBuAgCtbqwjcIuFKcmstMJrMsRatQcKPrkGYyNKUzGXNSpS58dtMLuhBchYQv_-H8CF1SMqJE8LtiRAitcsqP0IASWWWlKOQxGhDCWMZyKU_RGcAyISrzfIC-xtj4tvUd7nXQrY3Bfero0r3xATeuc9Hi1tcWT_UawOkOQ9TRwi2OC-sChk27-7V90V2NNYA3Lok6BXcxaLNNA_zh4gKDby3Wfb9yZjcEztFJo1dgLw7nEL0-3L9MHrPZ8_RpMp5lhrMyZszaRvCq5sIWWgsmKi1t2RQFLUlpioZKQkoiqeWVmTNbi6IS8wQ4EUyasuJDdLXP7YN_W1uIaunXoUsjFcsrRlM7nCV1vVcmeIBgG9UH1-qwUZSobb2qUId6k73ZWzAu7pb5we8-_ELV181_-G_yN6V-inA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2492102232</pqid></control><display><type>article</type><title>A common parametrization for finite mode Gaussian states, their symmetries, and associated contractions with some applications</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP - American Institute of Physics</source><creator>John, Tiju Cherian ; Parthasarathy, K. R.</creator><creatorcontrib>John, Tiju Cherian ; Parthasarathy, K. R.</creatorcontrib><description>Let Γ(H) be the boson Fock space over a finite dimensional Hilbert space H. It is shown that every Gaussian symmetry admits a Klauder–Bargmann integral representation in terms of coherent states. Furthermore, Gaussian states, Gaussian symmetries, and second quantization contractions belong to a weakly closed self-adjoint semigroup E2(H) of bounded operators in Γ(H). This yields a common parametrization for these operators. It is shown that the new parametrization for Gaussian states is a fruitful alternative to the customary parametrization by position–momentum mean vectors and covariance matrices. This leads to a rich harvest of corollaries: (i) every Gaussian state ρ admits a factorization ρ=Z1†Z1, where Z1 is an element of E2(H) and has the form Z1=cΓ(P)exp∑r=1nλrar+∑r,s=1nαrsaras on the dense linear manifold generated by all exponential vectors, where c is a positive scalar, Γ(P) is the second quantization of a positive contractive operator P in H, ar, 1 ≤ r ≤ n, are the annihilation operators corresponding to the n different modes in Γ(H), λr∈C, and [αrs] is a symmetric matrix in Mn(C); (ii) an explicit particle basis expansion of an arbitrary mean zero pure Gaussian state vector along with a density matrix formula for a general Gaussian state in terms of its E2(H)-parameters; (iii) a class of examples of pure n-mode Gaussian states that are completely entangled; (iv) tomography of an unknown Gaussian state in Γ(Cn) by the estimation of its E2(Cn) parameters using O(n2) measurements with a finite number of outcomes.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/5.0019413</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>Covariance matrix ; Hilbert space ; Mathematical analysis ; Matrix methods ; Mean ; Measurement ; Operators (mathematics) ; Parameter estimation ; Parameterization ; Physics ; State vectors ; Symmetry</subject><ispartof>Journal of mathematical physics, 2021-02, Vol.62 (2)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-2eef639d36e5aa6269a8e7f551707c5f18007081e39cb2ed6596be7f30628c793</citedby><cites>FETCH-LOGICAL-c327t-2eef639d36e5aa6269a8e7f551707c5f18007081e39cb2ed6596be7f30628c793</cites><orcidid>0000-0002-6806-9077</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/5.0019413$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,777,779,781,792,27905,27906,76132</link.rule.ids></links><search><creatorcontrib>John, Tiju Cherian</creatorcontrib><creatorcontrib>Parthasarathy, K. R.</creatorcontrib><title>A common parametrization for finite mode Gaussian states, their symmetries, and associated contractions with some applications</title><title>Journal of mathematical physics</title><description>Let Γ(H) be the boson Fock space over a finite dimensional Hilbert space H. It is shown that every Gaussian symmetry admits a Klauder–Bargmann integral representation in terms of coherent states. Furthermore, Gaussian states, Gaussian symmetries, and second quantization contractions belong to a weakly closed self-adjoint semigroup E2(H) of bounded operators in Γ(H). This yields a common parametrization for these operators. It is shown that the new parametrization for Gaussian states is a fruitful alternative to the customary parametrization by position–momentum mean vectors and covariance matrices. This leads to a rich harvest of corollaries: (i) every Gaussian state ρ admits a factorization ρ=Z1†Z1, where Z1 is an element of E2(H) and has the form Z1=cΓ(P)exp∑r=1nλrar+∑r,s=1nαrsaras on the dense linear manifold generated by all exponential vectors, where c is a positive scalar, Γ(P) is the second quantization of a positive contractive operator P in H, ar, 1 ≤ r ≤ n, are the annihilation operators corresponding to the n different modes in Γ(H), λr∈C, and [αrs] is a symmetric matrix in Mn(C); (ii) an explicit particle basis expansion of an arbitrary mean zero pure Gaussian state vector along with a density matrix formula for a general Gaussian state in terms of its E2(H)-parameters; (iii) a class of examples of pure n-mode Gaussian states that are completely entangled; (iv) tomography of an unknown Gaussian state in Γ(Cn) by the estimation of its E2(Cn) parameters using O(n2) measurements with a finite number of outcomes.</description><subject>Covariance matrix</subject><subject>Hilbert space</subject><subject>Mathematical analysis</subject><subject>Matrix methods</subject><subject>Mean</subject><subject>Measurement</subject><subject>Operators (mathematics)</subject><subject>Parameter estimation</subject><subject>Parameterization</subject><subject>Physics</subject><subject>State vectors</subject><subject>Symmetry</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp90MtKAzEUBuAgCtbqwjcIuFKcmstMJrMsRatQcKPrkGYyNKUzGXNSpS58dtMLuhBchYQv_-H8CF1SMqJE8LtiRAitcsqP0IASWWWlKOQxGhDCWMZyKU_RGcAyISrzfIC-xtj4tvUd7nXQrY3Bfero0r3xATeuc9Hi1tcWT_UawOkOQ9TRwi2OC-sChk27-7V90V2NNYA3Lok6BXcxaLNNA_zh4gKDby3Wfb9yZjcEztFJo1dgLw7nEL0-3L9MHrPZ8_RpMp5lhrMyZszaRvCq5sIWWgsmKi1t2RQFLUlpioZKQkoiqeWVmTNbi6IS8wQ4EUyasuJDdLXP7YN_W1uIaunXoUsjFcsrRlM7nCV1vVcmeIBgG9UH1-qwUZSobb2qUId6k73ZWzAu7pb5we8-_ELV181_-G_yN6V-inA</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>John, Tiju Cherian</creator><creator>Parthasarathy, K. R.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6806-9077</orcidid></search><sort><creationdate>20210201</creationdate><title>A common parametrization for finite mode Gaussian states, their symmetries, and associated contractions with some applications</title><author>John, Tiju Cherian ; Parthasarathy, K. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-2eef639d36e5aa6269a8e7f551707c5f18007081e39cb2ed6596be7f30628c793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Covariance matrix</topic><topic>Hilbert space</topic><topic>Mathematical analysis</topic><topic>Matrix methods</topic><topic>Mean</topic><topic>Measurement</topic><topic>Operators (mathematics)</topic><topic>Parameter estimation</topic><topic>Parameterization</topic><topic>Physics</topic><topic>State vectors</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>John, Tiju Cherian</creatorcontrib><creatorcontrib>Parthasarathy, K. R.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>John, Tiju Cherian</au><au>Parthasarathy, K. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A common parametrization for finite mode Gaussian states, their symmetries, and associated contractions with some applications</atitle><jtitle>Journal of mathematical physics</jtitle><date>2021-02-01</date><risdate>2021</risdate><volume>62</volume><issue>2</issue><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>Let Γ(H) be the boson Fock space over a finite dimensional Hilbert space H. It is shown that every Gaussian symmetry admits a Klauder–Bargmann integral representation in terms of coherent states. Furthermore, Gaussian states, Gaussian symmetries, and second quantization contractions belong to a weakly closed self-adjoint semigroup E2(H) of bounded operators in Γ(H). This yields a common parametrization for these operators. It is shown that the new parametrization for Gaussian states is a fruitful alternative to the customary parametrization by position–momentum mean vectors and covariance matrices. This leads to a rich harvest of corollaries: (i) every Gaussian state ρ admits a factorization ρ=Z1†Z1, where Z1 is an element of E2(H) and has the form Z1=cΓ(P)exp∑r=1nλrar+∑r,s=1nαrsaras on the dense linear manifold generated by all exponential vectors, where c is a positive scalar, Γ(P) is the second quantization of a positive contractive operator P in H, ar, 1 ≤ r ≤ n, are the annihilation operators corresponding to the n different modes in Γ(H), λr∈C, and [αrs] is a symmetric matrix in Mn(C); (ii) an explicit particle basis expansion of an arbitrary mean zero pure Gaussian state vector along with a density matrix formula for a general Gaussian state in terms of its E2(H)-parameters; (iii) a class of examples of pure n-mode Gaussian states that are completely entangled; (iv) tomography of an unknown Gaussian state in Γ(Cn) by the estimation of its E2(Cn) parameters using O(n2) measurements with a finite number of outcomes.</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0019413</doi><tpages>39</tpages><orcidid>https://orcid.org/0000-0002-6806-9077</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 2021-02, Vol.62 (2)
issn 0022-2488
1089-7658
language eng
recordid cdi_crossref_primary_10_1063_5_0019413
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP - American Institute of Physics
subjects Covariance matrix
Hilbert space
Mathematical analysis
Matrix methods
Mean
Measurement
Operators (mathematics)
Parameter estimation
Parameterization
Physics
State vectors
Symmetry
title A common parametrization for finite mode Gaussian states, their symmetries, and associated contractions with some applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T06%3A04%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20common%20parametrization%20for%20finite%20mode%20Gaussian%20states,%20their%20symmetries,%20and%20associated%20contractions%20with%20some%20applications&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=John,%20Tiju%20Cherian&rft.date=2021-02-01&rft.volume=62&rft.issue=2&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/5.0019413&rft_dat=%3Cproquest_cross%3E2492102232%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c327t-2eef639d36e5aa6269a8e7f551707c5f18007081e39cb2ed6596be7f30628c793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2492102232&rft_id=info:pmid/&rfr_iscdi=true