Loading…
Frequency domain analysis of 3ω-scanning thermal microscope probe—Application to tip/surface thermal interface measurements in vacuum environment
The characterization of material thermal properties at nanoscales remains a challenge even if progress was achieved in developing outstanding characterization techniques like scanning thermal microscopy (SThM). In the present work, we propose a detailed procedure based on the combined use of a SThM...
Saved in:
Published in: | Journal of applied physics 2021-02, Vol.129 (5) |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c396t-9195159f90128451d603298a4ad743a2c3dac2261d7f5dce1c1b24140db8eec33 |
---|---|
cites | cdi_FETCH-LOGICAL-c396t-9195159f90128451d603298a4ad743a2c3dac2261d7f5dce1c1b24140db8eec33 |
container_end_page | |
container_issue | 5 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 129 |
creator | Pernot, G. Metjari, A. Chaynes, H. Weber, M. Isaiev, M. Lacroix, D. |
description | The characterization of material thermal properties at nanoscales remains a challenge even if progress was achieved in developing outstanding characterization techniques like scanning thermal microscopy (SThM). In the present work, we propose a detailed procedure based on the combined use of a SThM probe characterization and its Finite Element Method (FEM) modeling to recover in operando 3ω measurements achieved under high vacuum. This approach is based on a two-step methodology: (i) a fine description of the probe's electrical and frequency behaviors in “out of contact” mode to determine the intrinsic parameters of the SThM tip and (ii) a minimization of the free parameter of our model, i.e., the contact thermal resistance, by comparing 3ω measurements with the simulations of the probe operating “in contact mode.” Such an approach allows us to measure thermal interface resistances between the tip and the surface. We applied our methodology to three different materials with known thermal properties: Si, SiO2 bulk materials, and a gold thin film. In addition, the FEM modeling provides insights into SThM thermal probes sensitivity, as a function of probe/sample interface resistance and the contact area to measure material thermal conductivity paving the way to quantitative SThM measurements. |
doi_str_mv | 10.1063/5.0020975 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0020975</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2485302538</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-9195159f90128451d603298a4ad743a2c3dac2261d7f5dce1c1b24140db8eec33</originalsourceid><addsrcrecordid>eNqdkc1q3DAURkVpodM0i76BoKsWnOhKlm0th9D8wEA27VrckeVEwZZcSR6YXbfd5736DnmSajoh2XclODr3g_tdQj4BOwPWiHN5xhhnqpVvyApYp6pWSvaWrAqFqlOtek8-pPTAGEAn1Io8Xkb7c7He7GkfJnSeosdxn1yiYaDiz-8qGfTe-Tua722ccKSTMzEkE2ZL5xi29unX43qeR2cwu-BpDjS7-TwtcUBjX6acz_ZIJovl007W51Qw3aFZlolav3Mx-AP-SN4NOCZ7-vyekB-X375fXFeb26ubi_WmMkI1uVKgJEg1KAa8qyX0DRNcdVhj39YCuRE9Gs4b6NtB9saCgS2voWb9trPWCHFCvhxz73HUc3QTxr0O6PT1eqMPjAkogQ3soLifj27ZuRSWsn4ISyxdJc3rTgrGpeheEw8VpWiHl1hg-nAgLfXzgYr79egm4_K_7v5P3oX4Kuq5H8RfOkCibw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2485302538</pqid></control><display><type>article</type><title>Frequency domain analysis of 3ω-scanning thermal microscope probe—Application to tip/surface thermal interface measurements in vacuum environment</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Pernot, G. ; Metjari, A. ; Chaynes, H. ; Weber, M. ; Isaiev, M. ; Lacroix, D.</creator><creatorcontrib>Pernot, G. ; Metjari, A. ; Chaynes, H. ; Weber, M. ; Isaiev, M. ; Lacroix, D.</creatorcontrib><description>The characterization of material thermal properties at nanoscales remains a challenge even if progress was achieved in developing outstanding characterization techniques like scanning thermal microscopy (SThM). In the present work, we propose a detailed procedure based on the combined use of a SThM probe characterization and its Finite Element Method (FEM) modeling to recover in operando 3ω measurements achieved under high vacuum. This approach is based on a two-step methodology: (i) a fine description of the probe's electrical and frequency behaviors in “out of contact” mode to determine the intrinsic parameters of the SThM tip and (ii) a minimization of the free parameter of our model, i.e., the contact thermal resistance, by comparing 3ω measurements with the simulations of the probe operating “in contact mode.” Such an approach allows us to measure thermal interface resistances between the tip and the surface. We applied our methodology to three different materials with known thermal properties: Si, SiO2 bulk materials, and a gold thin film. In addition, the FEM modeling provides insights into SThM thermal probes sensitivity, as a function of probe/sample interface resistance and the contact area to measure material thermal conductivity paving the way to quantitative SThM measurements.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0020975</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Condensed Matter ; Electric contacts ; Electrical resistivity ; Finite element method ; Frequency analysis ; Frequency domain analysis ; High vacuum ; Materials Science ; Mathematical models ; Modelling ; Parameters ; Physics ; Scanning thermal microscopy ; Silicon dioxide ; Thermal conductivity ; Thermal resistance ; Thermodynamic properties ; Thin films</subject><ispartof>Journal of applied physics, 2021-02, Vol.129 (5)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under license by AIP Publishing.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-9195159f90128451d603298a4ad743a2c3dac2261d7f5dce1c1b24140db8eec33</citedby><cites>FETCH-LOGICAL-c396t-9195159f90128451d603298a4ad743a2c3dac2261d7f5dce1c1b24140db8eec33</cites><orcidid>0000-0002-0793-9825 ; 0000-0002-2549-3599 ; 0000-0002-0414-3637 ; 0000-0002-3845-8901 ; 0000-0003-1802-5479 ; 0000-0001-6067-8524</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03129861$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Pernot, G.</creatorcontrib><creatorcontrib>Metjari, A.</creatorcontrib><creatorcontrib>Chaynes, H.</creatorcontrib><creatorcontrib>Weber, M.</creatorcontrib><creatorcontrib>Isaiev, M.</creatorcontrib><creatorcontrib>Lacroix, D.</creatorcontrib><title>Frequency domain analysis of 3ω-scanning thermal microscope probe—Application to tip/surface thermal interface measurements in vacuum environment</title><title>Journal of applied physics</title><description>The characterization of material thermal properties at nanoscales remains a challenge even if progress was achieved in developing outstanding characterization techniques like scanning thermal microscopy (SThM). In the present work, we propose a detailed procedure based on the combined use of a SThM probe characterization and its Finite Element Method (FEM) modeling to recover in operando 3ω measurements achieved under high vacuum. This approach is based on a two-step methodology: (i) a fine description of the probe's electrical and frequency behaviors in “out of contact” mode to determine the intrinsic parameters of the SThM tip and (ii) a minimization of the free parameter of our model, i.e., the contact thermal resistance, by comparing 3ω measurements with the simulations of the probe operating “in contact mode.” Such an approach allows us to measure thermal interface resistances between the tip and the surface. We applied our methodology to three different materials with known thermal properties: Si, SiO2 bulk materials, and a gold thin film. In addition, the FEM modeling provides insights into SThM thermal probes sensitivity, as a function of probe/sample interface resistance and the contact area to measure material thermal conductivity paving the way to quantitative SThM measurements.</description><subject>Applied physics</subject><subject>Condensed Matter</subject><subject>Electric contacts</subject><subject>Electrical resistivity</subject><subject>Finite element method</subject><subject>Frequency analysis</subject><subject>Frequency domain analysis</subject><subject>High vacuum</subject><subject>Materials Science</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Parameters</subject><subject>Physics</subject><subject>Scanning thermal microscopy</subject><subject>Silicon dioxide</subject><subject>Thermal conductivity</subject><subject>Thermal resistance</subject><subject>Thermodynamic properties</subject><subject>Thin films</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqdkc1q3DAURkVpodM0i76BoKsWnOhKlm0th9D8wEA27VrckeVEwZZcSR6YXbfd5736DnmSajoh2XclODr3g_tdQj4BOwPWiHN5xhhnqpVvyApYp6pWSvaWrAqFqlOtek8-pPTAGEAn1Io8Xkb7c7He7GkfJnSeosdxn1yiYaDiz-8qGfTe-Tua722ccKSTMzEkE2ZL5xi29unX43qeR2cwu-BpDjS7-TwtcUBjX6acz_ZIJovl007W51Qw3aFZlolav3Mx-AP-SN4NOCZ7-vyekB-X375fXFeb26ubi_WmMkI1uVKgJEg1KAa8qyX0DRNcdVhj39YCuRE9Gs4b6NtB9saCgS2voWb9trPWCHFCvhxz73HUc3QTxr0O6PT1eqMPjAkogQ3soLifj27ZuRSWsn4ISyxdJc3rTgrGpeheEw8VpWiHl1hg-nAgLfXzgYr79egm4_K_7v5P3oX4Kuq5H8RfOkCibw</recordid><startdate>20210207</startdate><enddate>20210207</enddate><creator>Pernot, G.</creator><creator>Metjari, A.</creator><creator>Chaynes, H.</creator><creator>Weber, M.</creator><creator>Isaiev, M.</creator><creator>Lacroix, D.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-0793-9825</orcidid><orcidid>https://orcid.org/0000-0002-2549-3599</orcidid><orcidid>https://orcid.org/0000-0002-0414-3637</orcidid><orcidid>https://orcid.org/0000-0002-3845-8901</orcidid><orcidid>https://orcid.org/0000-0003-1802-5479</orcidid><orcidid>https://orcid.org/0000-0001-6067-8524</orcidid></search><sort><creationdate>20210207</creationdate><title>Frequency domain analysis of 3ω-scanning thermal microscope probe—Application to tip/surface thermal interface measurements in vacuum environment</title><author>Pernot, G. ; Metjari, A. ; Chaynes, H. ; Weber, M. ; Isaiev, M. ; Lacroix, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-9195159f90128451d603298a4ad743a2c3dac2261d7f5dce1c1b24140db8eec33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applied physics</topic><topic>Condensed Matter</topic><topic>Electric contacts</topic><topic>Electrical resistivity</topic><topic>Finite element method</topic><topic>Frequency analysis</topic><topic>Frequency domain analysis</topic><topic>High vacuum</topic><topic>Materials Science</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Parameters</topic><topic>Physics</topic><topic>Scanning thermal microscopy</topic><topic>Silicon dioxide</topic><topic>Thermal conductivity</topic><topic>Thermal resistance</topic><topic>Thermodynamic properties</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pernot, G.</creatorcontrib><creatorcontrib>Metjari, A.</creatorcontrib><creatorcontrib>Chaynes, H.</creatorcontrib><creatorcontrib>Weber, M.</creatorcontrib><creatorcontrib>Isaiev, M.</creatorcontrib><creatorcontrib>Lacroix, D.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pernot, G.</au><au>Metjari, A.</au><au>Chaynes, H.</au><au>Weber, M.</au><au>Isaiev, M.</au><au>Lacroix, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Frequency domain analysis of 3ω-scanning thermal microscope probe—Application to tip/surface thermal interface measurements in vacuum environment</atitle><jtitle>Journal of applied physics</jtitle><date>2021-02-07</date><risdate>2021</risdate><volume>129</volume><issue>5</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>The characterization of material thermal properties at nanoscales remains a challenge even if progress was achieved in developing outstanding characterization techniques like scanning thermal microscopy (SThM). In the present work, we propose a detailed procedure based on the combined use of a SThM probe characterization and its Finite Element Method (FEM) modeling to recover in operando 3ω measurements achieved under high vacuum. This approach is based on a two-step methodology: (i) a fine description of the probe's electrical and frequency behaviors in “out of contact” mode to determine the intrinsic parameters of the SThM tip and (ii) a minimization of the free parameter of our model, i.e., the contact thermal resistance, by comparing 3ω measurements with the simulations of the probe operating “in contact mode.” Such an approach allows us to measure thermal interface resistances between the tip and the surface. We applied our methodology to three different materials with known thermal properties: Si, SiO2 bulk materials, and a gold thin film. In addition, the FEM modeling provides insights into SThM thermal probes sensitivity, as a function of probe/sample interface resistance and the contact area to measure material thermal conductivity paving the way to quantitative SThM measurements.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0020975</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0793-9825</orcidid><orcidid>https://orcid.org/0000-0002-2549-3599</orcidid><orcidid>https://orcid.org/0000-0002-0414-3637</orcidid><orcidid>https://orcid.org/0000-0002-3845-8901</orcidid><orcidid>https://orcid.org/0000-0003-1802-5479</orcidid><orcidid>https://orcid.org/0000-0001-6067-8524</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2021-02, Vol.129 (5) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_crossref_primary_10_1063_5_0020975 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Applied physics Condensed Matter Electric contacts Electrical resistivity Finite element method Frequency analysis Frequency domain analysis High vacuum Materials Science Mathematical models Modelling Parameters Physics Scanning thermal microscopy Silicon dioxide Thermal conductivity Thermal resistance Thermodynamic properties Thin films |
title | Frequency domain analysis of 3ω-scanning thermal microscope probe—Application to tip/surface thermal interface measurements in vacuum environment |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T16%3A08%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Frequency%20domain%20analysis%20of%203%CF%89-scanning%20thermal%20microscope%20probe%E2%80%94Application%20to%20tip/surface%20thermal%20interface%20measurements%20in%20vacuum%20environment&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Pernot,%20G.&rft.date=2021-02-07&rft.volume=129&rft.issue=5&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0020975&rft_dat=%3Cproquest_cross%3E2485302538%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c396t-9195159f90128451d603298a4ad743a2c3dac2261d7f5dce1c1b24140db8eec33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2485302538&rft_id=info:pmid/&rfr_iscdi=true |