Loading…

Frequency domain analysis of 3ω-scanning thermal microscope probe—Application to tip/surface thermal interface measurements in vacuum environment

The characterization of material thermal properties at nanoscales remains a challenge even if progress was achieved in developing outstanding characterization techniques like scanning thermal microscopy (SThM). In the present work, we propose a detailed procedure based on the combined use of a SThM...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2021-02, Vol.129 (5)
Main Authors: Pernot, G., Metjari, A., Chaynes, H., Weber, M., Isaiev, M., Lacroix, D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c396t-9195159f90128451d603298a4ad743a2c3dac2261d7f5dce1c1b24140db8eec33
cites cdi_FETCH-LOGICAL-c396t-9195159f90128451d603298a4ad743a2c3dac2261d7f5dce1c1b24140db8eec33
container_end_page
container_issue 5
container_start_page
container_title Journal of applied physics
container_volume 129
creator Pernot, G.
Metjari, A.
Chaynes, H.
Weber, M.
Isaiev, M.
Lacroix, D.
description The characterization of material thermal properties at nanoscales remains a challenge even if progress was achieved in developing outstanding characterization techniques like scanning thermal microscopy (SThM). In the present work, we propose a detailed procedure based on the combined use of a SThM probe characterization and its Finite Element Method (FEM) modeling to recover in operando 3ω measurements achieved under high vacuum. This approach is based on a two-step methodology: (i) a fine description of the probe's electrical and frequency behaviors in “out of contact” mode to determine the intrinsic parameters of the SThM tip and (ii) a minimization of the free parameter of our model, i.e., the contact thermal resistance, by comparing 3ω measurements with the simulations of the probe operating “in contact mode.” Such an approach allows us to measure thermal interface resistances between the tip and the surface. We applied our methodology to three different materials with known thermal properties: Si, SiO2 bulk materials, and a gold thin film. In addition, the FEM modeling provides insights into SThM thermal probes sensitivity, as a function of probe/sample interface resistance and the contact area to measure material thermal conductivity paving the way to quantitative SThM measurements.
doi_str_mv 10.1063/5.0020975
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0020975</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2485302538</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-9195159f90128451d603298a4ad743a2c3dac2261d7f5dce1c1b24140db8eec33</originalsourceid><addsrcrecordid>eNqdkc1q3DAURkVpodM0i76BoKsWnOhKlm0th9D8wEA27VrckeVEwZZcSR6YXbfd5736DnmSajoh2XclODr3g_tdQj4BOwPWiHN5xhhnqpVvyApYp6pWSvaWrAqFqlOtek8-pPTAGEAn1Io8Xkb7c7He7GkfJnSeosdxn1yiYaDiz-8qGfTe-Tua722ccKSTMzEkE2ZL5xi29unX43qeR2cwu-BpDjS7-TwtcUBjX6acz_ZIJovl007W51Qw3aFZlolav3Mx-AP-SN4NOCZ7-vyekB-X375fXFeb26ubi_WmMkI1uVKgJEg1KAa8qyX0DRNcdVhj39YCuRE9Gs4b6NtB9saCgS2voWb9trPWCHFCvhxz73HUc3QTxr0O6PT1eqMPjAkogQ3soLifj27ZuRSWsn4ISyxdJc3rTgrGpeheEw8VpWiHl1hg-nAgLfXzgYr79egm4_K_7v5P3oX4Kuq5H8RfOkCibw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2485302538</pqid></control><display><type>article</type><title>Frequency domain analysis of 3ω-scanning thermal microscope probe—Application to tip/surface thermal interface measurements in vacuum environment</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Pernot, G. ; Metjari, A. ; Chaynes, H. ; Weber, M. ; Isaiev, M. ; Lacroix, D.</creator><creatorcontrib>Pernot, G. ; Metjari, A. ; Chaynes, H. ; Weber, M. ; Isaiev, M. ; Lacroix, D.</creatorcontrib><description>The characterization of material thermal properties at nanoscales remains a challenge even if progress was achieved in developing outstanding characterization techniques like scanning thermal microscopy (SThM). In the present work, we propose a detailed procedure based on the combined use of a SThM probe characterization and its Finite Element Method (FEM) modeling to recover in operando 3ω measurements achieved under high vacuum. This approach is based on a two-step methodology: (i) a fine description of the probe's electrical and frequency behaviors in “out of contact” mode to determine the intrinsic parameters of the SThM tip and (ii) a minimization of the free parameter of our model, i.e., the contact thermal resistance, by comparing 3ω measurements with the simulations of the probe operating “in contact mode.” Such an approach allows us to measure thermal interface resistances between the tip and the surface. We applied our methodology to three different materials with known thermal properties: Si, SiO2 bulk materials, and a gold thin film. In addition, the FEM modeling provides insights into SThM thermal probes sensitivity, as a function of probe/sample interface resistance and the contact area to measure material thermal conductivity paving the way to quantitative SThM measurements.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0020975</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Condensed Matter ; Electric contacts ; Electrical resistivity ; Finite element method ; Frequency analysis ; Frequency domain analysis ; High vacuum ; Materials Science ; Mathematical models ; Modelling ; Parameters ; Physics ; Scanning thermal microscopy ; Silicon dioxide ; Thermal conductivity ; Thermal resistance ; Thermodynamic properties ; Thin films</subject><ispartof>Journal of applied physics, 2021-02, Vol.129 (5)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under license by AIP Publishing.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-9195159f90128451d603298a4ad743a2c3dac2261d7f5dce1c1b24140db8eec33</citedby><cites>FETCH-LOGICAL-c396t-9195159f90128451d603298a4ad743a2c3dac2261d7f5dce1c1b24140db8eec33</cites><orcidid>0000-0002-0793-9825 ; 0000-0002-2549-3599 ; 0000-0002-0414-3637 ; 0000-0002-3845-8901 ; 0000-0003-1802-5479 ; 0000-0001-6067-8524</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03129861$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Pernot, G.</creatorcontrib><creatorcontrib>Metjari, A.</creatorcontrib><creatorcontrib>Chaynes, H.</creatorcontrib><creatorcontrib>Weber, M.</creatorcontrib><creatorcontrib>Isaiev, M.</creatorcontrib><creatorcontrib>Lacroix, D.</creatorcontrib><title>Frequency domain analysis of 3ω-scanning thermal microscope probe—Application to tip/surface thermal interface measurements in vacuum environment</title><title>Journal of applied physics</title><description>The characterization of material thermal properties at nanoscales remains a challenge even if progress was achieved in developing outstanding characterization techniques like scanning thermal microscopy (SThM). In the present work, we propose a detailed procedure based on the combined use of a SThM probe characterization and its Finite Element Method (FEM) modeling to recover in operando 3ω measurements achieved under high vacuum. This approach is based on a two-step methodology: (i) a fine description of the probe's electrical and frequency behaviors in “out of contact” mode to determine the intrinsic parameters of the SThM tip and (ii) a minimization of the free parameter of our model, i.e., the contact thermal resistance, by comparing 3ω measurements with the simulations of the probe operating “in contact mode.” Such an approach allows us to measure thermal interface resistances between the tip and the surface. We applied our methodology to three different materials with known thermal properties: Si, SiO2 bulk materials, and a gold thin film. In addition, the FEM modeling provides insights into SThM thermal probes sensitivity, as a function of probe/sample interface resistance and the contact area to measure material thermal conductivity paving the way to quantitative SThM measurements.</description><subject>Applied physics</subject><subject>Condensed Matter</subject><subject>Electric contacts</subject><subject>Electrical resistivity</subject><subject>Finite element method</subject><subject>Frequency analysis</subject><subject>Frequency domain analysis</subject><subject>High vacuum</subject><subject>Materials Science</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Parameters</subject><subject>Physics</subject><subject>Scanning thermal microscopy</subject><subject>Silicon dioxide</subject><subject>Thermal conductivity</subject><subject>Thermal resistance</subject><subject>Thermodynamic properties</subject><subject>Thin films</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqdkc1q3DAURkVpodM0i76BoKsWnOhKlm0th9D8wEA27VrckeVEwZZcSR6YXbfd5736DnmSajoh2XclODr3g_tdQj4BOwPWiHN5xhhnqpVvyApYp6pWSvaWrAqFqlOtek8-pPTAGEAn1Io8Xkb7c7He7GkfJnSeosdxn1yiYaDiz-8qGfTe-Tua722ccKSTMzEkE2ZL5xi29unX43qeR2cwu-BpDjS7-TwtcUBjX6acz_ZIJovl007W51Qw3aFZlolav3Mx-AP-SN4NOCZ7-vyekB-X375fXFeb26ubi_WmMkI1uVKgJEg1KAa8qyX0DRNcdVhj39YCuRE9Gs4b6NtB9saCgS2voWb9trPWCHFCvhxz73HUc3QTxr0O6PT1eqMPjAkogQ3soLifj27ZuRSWsn4ISyxdJc3rTgrGpeheEw8VpWiHl1hg-nAgLfXzgYr79egm4_K_7v5P3oX4Kuq5H8RfOkCibw</recordid><startdate>20210207</startdate><enddate>20210207</enddate><creator>Pernot, G.</creator><creator>Metjari, A.</creator><creator>Chaynes, H.</creator><creator>Weber, M.</creator><creator>Isaiev, M.</creator><creator>Lacroix, D.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-0793-9825</orcidid><orcidid>https://orcid.org/0000-0002-2549-3599</orcidid><orcidid>https://orcid.org/0000-0002-0414-3637</orcidid><orcidid>https://orcid.org/0000-0002-3845-8901</orcidid><orcidid>https://orcid.org/0000-0003-1802-5479</orcidid><orcidid>https://orcid.org/0000-0001-6067-8524</orcidid></search><sort><creationdate>20210207</creationdate><title>Frequency domain analysis of 3ω-scanning thermal microscope probe—Application to tip/surface thermal interface measurements in vacuum environment</title><author>Pernot, G. ; Metjari, A. ; Chaynes, H. ; Weber, M. ; Isaiev, M. ; Lacroix, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-9195159f90128451d603298a4ad743a2c3dac2261d7f5dce1c1b24140db8eec33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applied physics</topic><topic>Condensed Matter</topic><topic>Electric contacts</topic><topic>Electrical resistivity</topic><topic>Finite element method</topic><topic>Frequency analysis</topic><topic>Frequency domain analysis</topic><topic>High vacuum</topic><topic>Materials Science</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Parameters</topic><topic>Physics</topic><topic>Scanning thermal microscopy</topic><topic>Silicon dioxide</topic><topic>Thermal conductivity</topic><topic>Thermal resistance</topic><topic>Thermodynamic properties</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pernot, G.</creatorcontrib><creatorcontrib>Metjari, A.</creatorcontrib><creatorcontrib>Chaynes, H.</creatorcontrib><creatorcontrib>Weber, M.</creatorcontrib><creatorcontrib>Isaiev, M.</creatorcontrib><creatorcontrib>Lacroix, D.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pernot, G.</au><au>Metjari, A.</au><au>Chaynes, H.</au><au>Weber, M.</au><au>Isaiev, M.</au><au>Lacroix, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Frequency domain analysis of 3ω-scanning thermal microscope probe—Application to tip/surface thermal interface measurements in vacuum environment</atitle><jtitle>Journal of applied physics</jtitle><date>2021-02-07</date><risdate>2021</risdate><volume>129</volume><issue>5</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>The characterization of material thermal properties at nanoscales remains a challenge even if progress was achieved in developing outstanding characterization techniques like scanning thermal microscopy (SThM). In the present work, we propose a detailed procedure based on the combined use of a SThM probe characterization and its Finite Element Method (FEM) modeling to recover in operando 3ω measurements achieved under high vacuum. This approach is based on a two-step methodology: (i) a fine description of the probe's electrical and frequency behaviors in “out of contact” mode to determine the intrinsic parameters of the SThM tip and (ii) a minimization of the free parameter of our model, i.e., the contact thermal resistance, by comparing 3ω measurements with the simulations of the probe operating “in contact mode.” Such an approach allows us to measure thermal interface resistances between the tip and the surface. We applied our methodology to three different materials with known thermal properties: Si, SiO2 bulk materials, and a gold thin film. In addition, the FEM modeling provides insights into SThM thermal probes sensitivity, as a function of probe/sample interface resistance and the contact area to measure material thermal conductivity paving the way to quantitative SThM measurements.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0020975</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0793-9825</orcidid><orcidid>https://orcid.org/0000-0002-2549-3599</orcidid><orcidid>https://orcid.org/0000-0002-0414-3637</orcidid><orcidid>https://orcid.org/0000-0002-3845-8901</orcidid><orcidid>https://orcid.org/0000-0003-1802-5479</orcidid><orcidid>https://orcid.org/0000-0001-6067-8524</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2021-02, Vol.129 (5)
issn 0021-8979
1089-7550
language eng
recordid cdi_crossref_primary_10_1063_5_0020975
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Applied physics
Condensed Matter
Electric contacts
Electrical resistivity
Finite element method
Frequency analysis
Frequency domain analysis
High vacuum
Materials Science
Mathematical models
Modelling
Parameters
Physics
Scanning thermal microscopy
Silicon dioxide
Thermal conductivity
Thermal resistance
Thermodynamic properties
Thin films
title Frequency domain analysis of 3ω-scanning thermal microscope probe—Application to tip/surface thermal interface measurements in vacuum environment
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T16%3A08%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Frequency%20domain%20analysis%20of%203%CF%89-scanning%20thermal%20microscope%20probe%E2%80%94Application%20to%20tip/surface%20thermal%20interface%20measurements%20in%20vacuum%20environment&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Pernot,%20G.&rft.date=2021-02-07&rft.volume=129&rft.issue=5&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0020975&rft_dat=%3Cproquest_cross%3E2485302538%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c396t-9195159f90128451d603298a4ad743a2c3dac2261d7f5dce1c1b24140db8eec33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2485302538&rft_id=info:pmid/&rfr_iscdi=true