Loading…
Thermocapillary motion of a solid cylinder near a liquid–gas interface
The motion of a solid, infinitely long cylinder perpendicular to a convective liquid–gas interface due to thermocapillarity is investigated via an analytical model. If the cylinder temperature differs from the bulk temperature, a temperature gradient exists along the liquid–gas interface. This resul...
Saved in:
Published in: | Physics of fluids (1994) 2020-12, Vol.32 (12) |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c327t-cf8da7622529cacafd32c10c05f51fd49b8f2d9afbb7ed5a6f2c544752c3068b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c327t-cf8da7622529cacafd32c10c05f51fd49b8f2d9afbb7ed5a6f2c544752c3068b3 |
container_end_page | |
container_issue | 12 |
container_start_page | |
container_title | Physics of fluids (1994) |
container_volume | 32 |
creator | Arslanova, A. Natale, G. Reddy, N. Clasen, C. Fransaer, J. |
description | The motion of a solid, infinitely long cylinder perpendicular to a convective liquid–gas interface due to thermocapillarity is investigated via an analytical model. If the cylinder temperature differs from the bulk temperature, a temperature gradient exists along the liquid–gas interface. This results in surface tension gradients at the liquid–gas interface, causing fluid flow around the particle, which induces propulsion. For small particles and, thus, small Péclet and Reynolds numbers, the steady-state equations for temperature and flow fields are solved exactly using two-dimensional bipolar cylindrical coordinates. The velocity of the cylinder as a function of separation distance from the liquid–gas interface is determined for the case of a constant temperature or a constant heat flux on the surface of the cylinder. A larger temperature gradient at the liquid–gas interface in the latter system leads to a larger cylinder velocity and a higher propulsion efficiency. The thermocapillary effect results in larger force on a cylinder than forces arising from other self-propulsion mechanisms. |
doi_str_mv | 10.1063/5.0027309 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0027309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2468773271</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-cf8da7622529cacafd32c10c05f51fd49b8f2d9afbb7ed5a6f2c544752c3068b3</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsL3yDgSmHqTTJJZpZS1AoFN3UdMvnRlOmkTWYW3fkOvqFP4pR27epcDh_3cA5CtwRmBAR75DMAKhnUZ2hCoKoLKYQ4P9wSCiEYuURXOa8BgNVUTNBi9eXSJhq9DW2r0x5vYh9ih6PHGufYBovNvg2ddQl3TqfRbcNuCPb3--dTZxy63iWvjbtGF1632d2cdIo-Xp5X80WxfH99mz8tC8Oo7AvjK6uloJTT2mijvWXUEDDAPSfelnVTeWpr7ZtGOsu18NTwspScGgaiatgU3R3_blPcDS73ah2H1I2RipaiknKMISN1f6RMijkn59U2hc3YTxFQh6EUV6ehRvbhyGYTen1o_w_8Bw1taPk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2468773271</pqid></control><display><type>article</type><title>Thermocapillary motion of a solid cylinder near a liquid–gas interface</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP_美国物理联合会期刊回溯(NSTL购买)</source><creator>Arslanova, A. ; Natale, G. ; Reddy, N. ; Clasen, C. ; Fransaer, J.</creator><creatorcontrib>Arslanova, A. ; Natale, G. ; Reddy, N. ; Clasen, C. ; Fransaer, J.</creatorcontrib><description>The motion of a solid, infinitely long cylinder perpendicular to a convective liquid–gas interface due to thermocapillarity is investigated via an analytical model. If the cylinder temperature differs from the bulk temperature, a temperature gradient exists along the liquid–gas interface. This results in surface tension gradients at the liquid–gas interface, causing fluid flow around the particle, which induces propulsion. For small particles and, thus, small Péclet and Reynolds numbers, the steady-state equations for temperature and flow fields are solved exactly using two-dimensional bipolar cylindrical coordinates. The velocity of the cylinder as a function of separation distance from the liquid–gas interface is determined for the case of a constant temperature or a constant heat flux on the surface of the cylinder. A larger temperature gradient at the liquid–gas interface in the latter system leads to a larger cylinder velocity and a higher propulsion efficiency. The thermocapillary effect results in larger force on a cylinder than forces arising from other self-propulsion mechanisms.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0027309</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Computational fluid dynamics ; Cylinders ; Cylindrical coordinates ; Equations of state ; Fluid dynamics ; Fluid flow ; Heat flux ; Physics ; Propulsion ; Reynolds number ; Surface tension ; Temperature gradients</subject><ispartof>Physics of fluids (1994), 2020-12, Vol.32 (12)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-cf8da7622529cacafd32c10c05f51fd49b8f2d9afbb7ed5a6f2c544752c3068b3</citedby><cites>FETCH-LOGICAL-c327t-cf8da7622529cacafd32c10c05f51fd49b8f2d9afbb7ed5a6f2c544752c3068b3</cites><orcidid>0000-0002-0232-0687 ; 0000-0003-0163-485X ; 0000-0001-8820-999X ; 0000-0001-5331-0932 ; 0000-0002-9253-9008</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1559,27924,27925</link.rule.ids></links><search><creatorcontrib>Arslanova, A.</creatorcontrib><creatorcontrib>Natale, G.</creatorcontrib><creatorcontrib>Reddy, N.</creatorcontrib><creatorcontrib>Clasen, C.</creatorcontrib><creatorcontrib>Fransaer, J.</creatorcontrib><title>Thermocapillary motion of a solid cylinder near a liquid–gas interface</title><title>Physics of fluids (1994)</title><description>The motion of a solid, infinitely long cylinder perpendicular to a convective liquid–gas interface due to thermocapillarity is investigated via an analytical model. If the cylinder temperature differs from the bulk temperature, a temperature gradient exists along the liquid–gas interface. This results in surface tension gradients at the liquid–gas interface, causing fluid flow around the particle, which induces propulsion. For small particles and, thus, small Péclet and Reynolds numbers, the steady-state equations for temperature and flow fields are solved exactly using two-dimensional bipolar cylindrical coordinates. The velocity of the cylinder as a function of separation distance from the liquid–gas interface is determined for the case of a constant temperature or a constant heat flux on the surface of the cylinder. A larger temperature gradient at the liquid–gas interface in the latter system leads to a larger cylinder velocity and a higher propulsion efficiency. The thermocapillary effect results in larger force on a cylinder than forces arising from other self-propulsion mechanisms.</description><subject>Computational fluid dynamics</subject><subject>Cylinders</subject><subject>Cylindrical coordinates</subject><subject>Equations of state</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Heat flux</subject><subject>Physics</subject><subject>Propulsion</subject><subject>Reynolds number</subject><subject>Surface tension</subject><subject>Temperature gradients</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWKsL3yDgSmHqTTJJZpZS1AoFN3UdMvnRlOmkTWYW3fkOvqFP4pR27epcDh_3cA5CtwRmBAR75DMAKhnUZ2hCoKoLKYQ4P9wSCiEYuURXOa8BgNVUTNBi9eXSJhq9DW2r0x5vYh9ih6PHGufYBovNvg2ddQl3TqfRbcNuCPb3--dTZxy63iWvjbtGF1632d2cdIo-Xp5X80WxfH99mz8tC8Oo7AvjK6uloJTT2mijvWXUEDDAPSfelnVTeWpr7ZtGOsu18NTwspScGgaiatgU3R3_blPcDS73ah2H1I2RipaiknKMISN1f6RMijkn59U2hc3YTxFQh6EUV6ehRvbhyGYTen1o_w_8Bw1taPk</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Arslanova, A.</creator><creator>Natale, G.</creator><creator>Reddy, N.</creator><creator>Clasen, C.</creator><creator>Fransaer, J.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0232-0687</orcidid><orcidid>https://orcid.org/0000-0003-0163-485X</orcidid><orcidid>https://orcid.org/0000-0001-8820-999X</orcidid><orcidid>https://orcid.org/0000-0001-5331-0932</orcidid><orcidid>https://orcid.org/0000-0002-9253-9008</orcidid></search><sort><creationdate>20201201</creationdate><title>Thermocapillary motion of a solid cylinder near a liquid–gas interface</title><author>Arslanova, A. ; Natale, G. ; Reddy, N. ; Clasen, C. ; Fransaer, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-cf8da7622529cacafd32c10c05f51fd49b8f2d9afbb7ed5a6f2c544752c3068b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computational fluid dynamics</topic><topic>Cylinders</topic><topic>Cylindrical coordinates</topic><topic>Equations of state</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Heat flux</topic><topic>Physics</topic><topic>Propulsion</topic><topic>Reynolds number</topic><topic>Surface tension</topic><topic>Temperature gradients</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arslanova, A.</creatorcontrib><creatorcontrib>Natale, G.</creatorcontrib><creatorcontrib>Reddy, N.</creatorcontrib><creatorcontrib>Clasen, C.</creatorcontrib><creatorcontrib>Fransaer, J.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arslanova, A.</au><au>Natale, G.</au><au>Reddy, N.</au><au>Clasen, C.</au><au>Fransaer, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermocapillary motion of a solid cylinder near a liquid–gas interface</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2020-12-01</date><risdate>2020</risdate><volume>32</volume><issue>12</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>The motion of a solid, infinitely long cylinder perpendicular to a convective liquid–gas interface due to thermocapillarity is investigated via an analytical model. If the cylinder temperature differs from the bulk temperature, a temperature gradient exists along the liquid–gas interface. This results in surface tension gradients at the liquid–gas interface, causing fluid flow around the particle, which induces propulsion. For small particles and, thus, small Péclet and Reynolds numbers, the steady-state equations for temperature and flow fields are solved exactly using two-dimensional bipolar cylindrical coordinates. The velocity of the cylinder as a function of separation distance from the liquid–gas interface is determined for the case of a constant temperature or a constant heat flux on the surface of the cylinder. A larger temperature gradient at the liquid–gas interface in the latter system leads to a larger cylinder velocity and a higher propulsion efficiency. The thermocapillary effect results in larger force on a cylinder than forces arising from other self-propulsion mechanisms.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0027309</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-0232-0687</orcidid><orcidid>https://orcid.org/0000-0003-0163-485X</orcidid><orcidid>https://orcid.org/0000-0001-8820-999X</orcidid><orcidid>https://orcid.org/0000-0001-5331-0932</orcidid><orcidid>https://orcid.org/0000-0002-9253-9008</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-6631 |
ispartof | Physics of fluids (1994), 2020-12, Vol.32 (12) |
issn | 1070-6631 1089-7666 |
language | eng |
recordid | cdi_crossref_primary_10_1063_5_0027309 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP_美国物理联合会期刊回溯(NSTL购买) |
subjects | Computational fluid dynamics Cylinders Cylindrical coordinates Equations of state Fluid dynamics Fluid flow Heat flux Physics Propulsion Reynolds number Surface tension Temperature gradients |
title | Thermocapillary motion of a solid cylinder near a liquid–gas interface |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T13%3A28%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermocapillary%20motion%20of%20a%20solid%20cylinder%20near%20a%20liquid%E2%80%93gas%20interface&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Arslanova,%20A.&rft.date=2020-12-01&rft.volume=32&rft.issue=12&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0027309&rft_dat=%3Cproquest_cross%3E2468773271%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c327t-cf8da7622529cacafd32c10c05f51fd49b8f2d9afbb7ed5a6f2c544752c3068b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2468773271&rft_id=info:pmid/&rfr_iscdi=true |