Loading…

Thermocapillary motion of a solid cylinder near a liquid–gas interface

The motion of a solid, infinitely long cylinder perpendicular to a convective liquid–gas interface due to thermocapillarity is investigated via an analytical model. If the cylinder temperature differs from the bulk temperature, a temperature gradient exists along the liquid–gas interface. This resul...

Full description

Saved in:
Bibliographic Details
Published in:Physics of fluids (1994) 2020-12, Vol.32 (12)
Main Authors: Arslanova, A., Natale, G., Reddy, N., Clasen, C., Fransaer, J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c327t-cf8da7622529cacafd32c10c05f51fd49b8f2d9afbb7ed5a6f2c544752c3068b3
cites cdi_FETCH-LOGICAL-c327t-cf8da7622529cacafd32c10c05f51fd49b8f2d9afbb7ed5a6f2c544752c3068b3
container_end_page
container_issue 12
container_start_page
container_title Physics of fluids (1994)
container_volume 32
creator Arslanova, A.
Natale, G.
Reddy, N.
Clasen, C.
Fransaer, J.
description The motion of a solid, infinitely long cylinder perpendicular to a convective liquid–gas interface due to thermocapillarity is investigated via an analytical model. If the cylinder temperature differs from the bulk temperature, a temperature gradient exists along the liquid–gas interface. This results in surface tension gradients at the liquid–gas interface, causing fluid flow around the particle, which induces propulsion. For small particles and, thus, small Péclet and Reynolds numbers, the steady-state equations for temperature and flow fields are solved exactly using two-dimensional bipolar cylindrical coordinates. The velocity of the cylinder as a function of separation distance from the liquid–gas interface is determined for the case of a constant temperature or a constant heat flux on the surface of the cylinder. A larger temperature gradient at the liquid–gas interface in the latter system leads to a larger cylinder velocity and a higher propulsion efficiency. The thermocapillary effect results in larger force on a cylinder than forces arising from other self-propulsion mechanisms.
doi_str_mv 10.1063/5.0027309
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0027309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2468773271</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-cf8da7622529cacafd32c10c05f51fd49b8f2d9afbb7ed5a6f2c544752c3068b3</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsL3yDgSmHqTTJJZpZS1AoFN3UdMvnRlOmkTWYW3fkOvqFP4pR27epcDh_3cA5CtwRmBAR75DMAKhnUZ2hCoKoLKYQ4P9wSCiEYuURXOa8BgNVUTNBi9eXSJhq9DW2r0x5vYh9ih6PHGufYBovNvg2ddQl3TqfRbcNuCPb3--dTZxy63iWvjbtGF1632d2cdIo-Xp5X80WxfH99mz8tC8Oo7AvjK6uloJTT2mijvWXUEDDAPSfelnVTeWpr7ZtGOsu18NTwspScGgaiatgU3R3_blPcDS73ah2H1I2RipaiknKMISN1f6RMijkn59U2hc3YTxFQh6EUV6ehRvbhyGYTen1o_w_8Bw1taPk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2468773271</pqid></control><display><type>article</type><title>Thermocapillary motion of a solid cylinder near a liquid–gas interface</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP_美国物理联合会期刊回溯(NSTL购买)</source><creator>Arslanova, A. ; Natale, G. ; Reddy, N. ; Clasen, C. ; Fransaer, J.</creator><creatorcontrib>Arslanova, A. ; Natale, G. ; Reddy, N. ; Clasen, C. ; Fransaer, J.</creatorcontrib><description>The motion of a solid, infinitely long cylinder perpendicular to a convective liquid–gas interface due to thermocapillarity is investigated via an analytical model. If the cylinder temperature differs from the bulk temperature, a temperature gradient exists along the liquid–gas interface. This results in surface tension gradients at the liquid–gas interface, causing fluid flow around the particle, which induces propulsion. For small particles and, thus, small Péclet and Reynolds numbers, the steady-state equations for temperature and flow fields are solved exactly using two-dimensional bipolar cylindrical coordinates. The velocity of the cylinder as a function of separation distance from the liquid–gas interface is determined for the case of a constant temperature or a constant heat flux on the surface of the cylinder. A larger temperature gradient at the liquid–gas interface in the latter system leads to a larger cylinder velocity and a higher propulsion efficiency. The thermocapillary effect results in larger force on a cylinder than forces arising from other self-propulsion mechanisms.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0027309</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Computational fluid dynamics ; Cylinders ; Cylindrical coordinates ; Equations of state ; Fluid dynamics ; Fluid flow ; Heat flux ; Physics ; Propulsion ; Reynolds number ; Surface tension ; Temperature gradients</subject><ispartof>Physics of fluids (1994), 2020-12, Vol.32 (12)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-cf8da7622529cacafd32c10c05f51fd49b8f2d9afbb7ed5a6f2c544752c3068b3</citedby><cites>FETCH-LOGICAL-c327t-cf8da7622529cacafd32c10c05f51fd49b8f2d9afbb7ed5a6f2c544752c3068b3</cites><orcidid>0000-0002-0232-0687 ; 0000-0003-0163-485X ; 0000-0001-8820-999X ; 0000-0001-5331-0932 ; 0000-0002-9253-9008</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1559,27924,27925</link.rule.ids></links><search><creatorcontrib>Arslanova, A.</creatorcontrib><creatorcontrib>Natale, G.</creatorcontrib><creatorcontrib>Reddy, N.</creatorcontrib><creatorcontrib>Clasen, C.</creatorcontrib><creatorcontrib>Fransaer, J.</creatorcontrib><title>Thermocapillary motion of a solid cylinder near a liquid–gas interface</title><title>Physics of fluids (1994)</title><description>The motion of a solid, infinitely long cylinder perpendicular to a convective liquid–gas interface due to thermocapillarity is investigated via an analytical model. If the cylinder temperature differs from the bulk temperature, a temperature gradient exists along the liquid–gas interface. This results in surface tension gradients at the liquid–gas interface, causing fluid flow around the particle, which induces propulsion. For small particles and, thus, small Péclet and Reynolds numbers, the steady-state equations for temperature and flow fields are solved exactly using two-dimensional bipolar cylindrical coordinates. The velocity of the cylinder as a function of separation distance from the liquid–gas interface is determined for the case of a constant temperature or a constant heat flux on the surface of the cylinder. A larger temperature gradient at the liquid–gas interface in the latter system leads to a larger cylinder velocity and a higher propulsion efficiency. The thermocapillary effect results in larger force on a cylinder than forces arising from other self-propulsion mechanisms.</description><subject>Computational fluid dynamics</subject><subject>Cylinders</subject><subject>Cylindrical coordinates</subject><subject>Equations of state</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Heat flux</subject><subject>Physics</subject><subject>Propulsion</subject><subject>Reynolds number</subject><subject>Surface tension</subject><subject>Temperature gradients</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWKsL3yDgSmHqTTJJZpZS1AoFN3UdMvnRlOmkTWYW3fkOvqFP4pR27epcDh_3cA5CtwRmBAR75DMAKhnUZ2hCoKoLKYQ4P9wSCiEYuURXOa8BgNVUTNBi9eXSJhq9DW2r0x5vYh9ih6PHGufYBovNvg2ddQl3TqfRbcNuCPb3--dTZxy63iWvjbtGF1632d2cdIo-Xp5X80WxfH99mz8tC8Oo7AvjK6uloJTT2mijvWXUEDDAPSfelnVTeWpr7ZtGOsu18NTwspScGgaiatgU3R3_blPcDS73ah2H1I2RipaiknKMISN1f6RMijkn59U2hc3YTxFQh6EUV6ehRvbhyGYTen1o_w_8Bw1taPk</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Arslanova, A.</creator><creator>Natale, G.</creator><creator>Reddy, N.</creator><creator>Clasen, C.</creator><creator>Fransaer, J.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0232-0687</orcidid><orcidid>https://orcid.org/0000-0003-0163-485X</orcidid><orcidid>https://orcid.org/0000-0001-8820-999X</orcidid><orcidid>https://orcid.org/0000-0001-5331-0932</orcidid><orcidid>https://orcid.org/0000-0002-9253-9008</orcidid></search><sort><creationdate>20201201</creationdate><title>Thermocapillary motion of a solid cylinder near a liquid–gas interface</title><author>Arslanova, A. ; Natale, G. ; Reddy, N. ; Clasen, C. ; Fransaer, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-cf8da7622529cacafd32c10c05f51fd49b8f2d9afbb7ed5a6f2c544752c3068b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computational fluid dynamics</topic><topic>Cylinders</topic><topic>Cylindrical coordinates</topic><topic>Equations of state</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Heat flux</topic><topic>Physics</topic><topic>Propulsion</topic><topic>Reynolds number</topic><topic>Surface tension</topic><topic>Temperature gradients</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arslanova, A.</creatorcontrib><creatorcontrib>Natale, G.</creatorcontrib><creatorcontrib>Reddy, N.</creatorcontrib><creatorcontrib>Clasen, C.</creatorcontrib><creatorcontrib>Fransaer, J.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arslanova, A.</au><au>Natale, G.</au><au>Reddy, N.</au><au>Clasen, C.</au><au>Fransaer, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermocapillary motion of a solid cylinder near a liquid–gas interface</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2020-12-01</date><risdate>2020</risdate><volume>32</volume><issue>12</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>The motion of a solid, infinitely long cylinder perpendicular to a convective liquid–gas interface due to thermocapillarity is investigated via an analytical model. If the cylinder temperature differs from the bulk temperature, a temperature gradient exists along the liquid–gas interface. This results in surface tension gradients at the liquid–gas interface, causing fluid flow around the particle, which induces propulsion. For small particles and, thus, small Péclet and Reynolds numbers, the steady-state equations for temperature and flow fields are solved exactly using two-dimensional bipolar cylindrical coordinates. The velocity of the cylinder as a function of separation distance from the liquid–gas interface is determined for the case of a constant temperature or a constant heat flux on the surface of the cylinder. A larger temperature gradient at the liquid–gas interface in the latter system leads to a larger cylinder velocity and a higher propulsion efficiency. The thermocapillary effect results in larger force on a cylinder than forces arising from other self-propulsion mechanisms.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0027309</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-0232-0687</orcidid><orcidid>https://orcid.org/0000-0003-0163-485X</orcidid><orcidid>https://orcid.org/0000-0001-8820-999X</orcidid><orcidid>https://orcid.org/0000-0001-5331-0932</orcidid><orcidid>https://orcid.org/0000-0002-9253-9008</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2020-12, Vol.32 (12)
issn 1070-6631
1089-7666
language eng
recordid cdi_crossref_primary_10_1063_5_0027309
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP_美国物理联合会期刊回溯(NSTL购买)
subjects Computational fluid dynamics
Cylinders
Cylindrical coordinates
Equations of state
Fluid dynamics
Fluid flow
Heat flux
Physics
Propulsion
Reynolds number
Surface tension
Temperature gradients
title Thermocapillary motion of a solid cylinder near a liquid–gas interface
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T13%3A28%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermocapillary%20motion%20of%20a%20solid%20cylinder%20near%20a%20liquid%E2%80%93gas%20interface&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Arslanova,%20A.&rft.date=2020-12-01&rft.volume=32&rft.issue=12&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0027309&rft_dat=%3Cproquest_cross%3E2468773271%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c327t-cf8da7622529cacafd32c10c05f51fd49b8f2d9afbb7ed5a6f2c544752c3068b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2468773271&rft_id=info:pmid/&rfr_iscdi=true