Loading…
Complex 3D bioprinting methods
3D bioprinting technology is evolving in complexity to enable human-scale, high-resolution, and multi-cellular constructs to better mimic the native tissue microenvironment. The ultimate goal is to achieve necessary complexity in the bioprinting process to biomanufacture fully-functional tissues and...
Saved in:
Published in: | APL Bioengineering 2021-03, Vol.5 (1), p.011508-011508 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | 3D bioprinting technology is evolving in complexity to enable human-scale, high-resolution, and multi-cellular constructs to better mimic the native tissue microenvironment. The ultimate goal is to achieve necessary complexity in the bioprinting process to biomanufacture fully-functional tissues and organs to address organ shortage and lack of patient-specific disease models. In this Review, we presented an in-depth overview of complex 3D bioprinting approaches including evolution of complex bioprinting, from simple gel-casting approach to multi-material bioprinting to omnidirectional bioprinting approaches, and emerging bioprinting approaches, including 4D bioprinting and in situ bioprinting technologies. |
---|---|
ISSN: | 2473-2877 2473-2877 |
DOI: | 10.1063/5.0034901 |