Loading…

Thermal expansion characterization of thin films using harmonic Joule heating combined with atomic force microscopy

Characterizing coefficient of thermal expansion (CTE) for thin films is often challenging as the experimental signal is asymptotically reduced with decreasing thickness. Here, we present a method to measure CTE of thin films by locally confining an active thermal volume using harmonic Joule heating....

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2021-05, Vol.118 (19)
Main Authors: Chaikasetsin, Settasit, Kodama, Takashi, Bae, Kiho, Jung, Jun Young, Shin, Jeeyoung, Lee, Byung Chul, Kim, Brian S. Y., Seo, Jungju, Sim, Uk, Prinz, Fritz B., Goodson, Kenneth E., Park, Woosung
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c327t-9f2a2202435bf836cabfd1293263a314ab6d57f48f3e9a50d86195dbf3f26f4a3
cites cdi_FETCH-LOGICAL-c327t-9f2a2202435bf836cabfd1293263a314ab6d57f48f3e9a50d86195dbf3f26f4a3
container_end_page
container_issue 19
container_start_page
container_title Applied physics letters
container_volume 118
creator Chaikasetsin, Settasit
Kodama, Takashi
Bae, Kiho
Jung, Jun Young
Shin, Jeeyoung
Lee, Byung Chul
Kim, Brian S. Y.
Seo, Jungju
Sim, Uk
Prinz, Fritz B.
Goodson, Kenneth E.
Park, Woosung
description Characterizing coefficient of thermal expansion (CTE) for thin films is often challenging as the experimental signal is asymptotically reduced with decreasing thickness. Here, we present a method to measure CTE of thin films by locally confining an active thermal volume using harmonic Joule heating. Importantly, we simultaneously probe the harmonic expansion at atomic-scale thickness resolution using atomic force microscopy. We use a differential method on lithographically patterned thin films to isolate the topographical and harmonic thermal expansion contributions of the thin films. Based on the measured thermal expansion, we use numerical simulations to extract the CTE considering the stress induced from neighboring layers. We demonstrate our method using poly(methyl methacrylate), and the measured CTE of 55.0 × 10−6 ± 6.4 × 10−6 K−1 shows agreement with previous works. This work paves an avenue for investigating thermo-mechanical characterization in numerous materials systems, including both organic and inorganic media.
doi_str_mv 10.1063/5.0049160
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0049160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2525151140</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-9f2a2202435bf836cabfd1293263a314ab6d57f48f3e9a50d86195dbf3f26f4a3</originalsourceid><addsrcrecordid>eNqd0E1LxDAQBuAgCq6rB_9BwJNC13w0aXuUxU8EL-s5pGlis7RNTVJ1_fVm3QXvnjIZHmaGF4BzjBYYcXrNFgjlFeboAMwwKoqMYlweghlCiGa8YvgYnISwTl9GKJ2BsGq172UH9dcoh2DdAFUrvVRRe_st47bhDIytHaCxXR_gFOzwBpPp3WAVfHJTp2GrE01t5fraDrqBnza2UEbXJ2KcVxqmyrug3Lg5BUdGdkGf7d85eL27XS0fsueX-8flzXOmKCliVhkiCUEkp6w2JeVK1qbBpKKEU0lxLmvesMLkpaG6kgw1JccVa2pDDeEml3QOLnZzR-_eJx2iWLvJD2mlIIwwzDDOUVKXO7U9L3htxOhtL_1GYCS2mQom9pkme7WzQdn4G87_8Ifzf1CMjaE_1K2GtA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2525151140</pqid></control><display><type>article</type><title>Thermal expansion characterization of thin films using harmonic Joule heating combined with atomic force microscopy</title><source>American Institute of Physics (AIP) Publications</source><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Chaikasetsin, Settasit ; Kodama, Takashi ; Bae, Kiho ; Jung, Jun Young ; Shin, Jeeyoung ; Lee, Byung Chul ; Kim, Brian S. Y. ; Seo, Jungju ; Sim, Uk ; Prinz, Fritz B. ; Goodson, Kenneth E. ; Park, Woosung</creator><creatorcontrib>Chaikasetsin, Settasit ; Kodama, Takashi ; Bae, Kiho ; Jung, Jun Young ; Shin, Jeeyoung ; Lee, Byung Chul ; Kim, Brian S. Y. ; Seo, Jungju ; Sim, Uk ; Prinz, Fritz B. ; Goodson, Kenneth E. ; Park, Woosung</creatorcontrib><description>Characterizing coefficient of thermal expansion (CTE) for thin films is often challenging as the experimental signal is asymptotically reduced with decreasing thickness. Here, we present a method to measure CTE of thin films by locally confining an active thermal volume using harmonic Joule heating. Importantly, we simultaneously probe the harmonic expansion at atomic-scale thickness resolution using atomic force microscopy. We use a differential method on lithographically patterned thin films to isolate the topographical and harmonic thermal expansion contributions of the thin films. Based on the measured thermal expansion, we use numerical simulations to extract the CTE considering the stress induced from neighboring layers. We demonstrate our method using poly(methyl methacrylate), and the measured CTE of 55.0 × 10−6 ± 6.4 × 10−6 K−1 shows agreement with previous works. This work paves an avenue for investigating thermo-mechanical characterization in numerous materials systems, including both organic and inorganic media.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0049160</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Atomic force microscopy ; Mechanical properties ; Microscopy ; Ohmic dissipation ; Polymethyl methacrylate ; Resistance heating ; Thermal expansion ; Thermodynamic properties ; Thickness ; Thin films</subject><ispartof>Applied physics letters, 2021-05, Vol.118 (19)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-9f2a2202435bf836cabfd1293263a314ab6d57f48f3e9a50d86195dbf3f26f4a3</citedby><cites>FETCH-LOGICAL-c327t-9f2a2202435bf836cabfd1293263a314ab6d57f48f3e9a50d86195dbf3f26f4a3</cites><orcidid>0000-0003-4661-0878 ; 0000-0002-7702-716X ; 0000-0001-6281-9407 ; 0000-0002-8753-5766 ; 0000-0001-7767-495X ; 0000-0001-9119-3781</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0049160$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,782,784,795,27924,27925,76383</link.rule.ids></links><search><creatorcontrib>Chaikasetsin, Settasit</creatorcontrib><creatorcontrib>Kodama, Takashi</creatorcontrib><creatorcontrib>Bae, Kiho</creatorcontrib><creatorcontrib>Jung, Jun Young</creatorcontrib><creatorcontrib>Shin, Jeeyoung</creatorcontrib><creatorcontrib>Lee, Byung Chul</creatorcontrib><creatorcontrib>Kim, Brian S. Y.</creatorcontrib><creatorcontrib>Seo, Jungju</creatorcontrib><creatorcontrib>Sim, Uk</creatorcontrib><creatorcontrib>Prinz, Fritz B.</creatorcontrib><creatorcontrib>Goodson, Kenneth E.</creatorcontrib><creatorcontrib>Park, Woosung</creatorcontrib><title>Thermal expansion characterization of thin films using harmonic Joule heating combined with atomic force microscopy</title><title>Applied physics letters</title><description>Characterizing coefficient of thermal expansion (CTE) for thin films is often challenging as the experimental signal is asymptotically reduced with decreasing thickness. Here, we present a method to measure CTE of thin films by locally confining an active thermal volume using harmonic Joule heating. Importantly, we simultaneously probe the harmonic expansion at atomic-scale thickness resolution using atomic force microscopy. We use a differential method on lithographically patterned thin films to isolate the topographical and harmonic thermal expansion contributions of the thin films. Based on the measured thermal expansion, we use numerical simulations to extract the CTE considering the stress induced from neighboring layers. We demonstrate our method using poly(methyl methacrylate), and the measured CTE of 55.0 × 10−6 ± 6.4 × 10−6 K−1 shows agreement with previous works. This work paves an avenue for investigating thermo-mechanical characterization in numerous materials systems, including both organic and inorganic media.</description><subject>Applied physics</subject><subject>Atomic force microscopy</subject><subject>Mechanical properties</subject><subject>Microscopy</subject><subject>Ohmic dissipation</subject><subject>Polymethyl methacrylate</subject><subject>Resistance heating</subject><subject>Thermal expansion</subject><subject>Thermodynamic properties</subject><subject>Thickness</subject><subject>Thin films</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqd0E1LxDAQBuAgCq6rB_9BwJNC13w0aXuUxU8EL-s5pGlis7RNTVJ1_fVm3QXvnjIZHmaGF4BzjBYYcXrNFgjlFeboAMwwKoqMYlweghlCiGa8YvgYnISwTl9GKJ2BsGq172UH9dcoh2DdAFUrvVRRe_st47bhDIytHaCxXR_gFOzwBpPp3WAVfHJTp2GrE01t5fraDrqBnza2UEbXJ2KcVxqmyrug3Lg5BUdGdkGf7d85eL27XS0fsueX-8flzXOmKCliVhkiCUEkp6w2JeVK1qbBpKKEU0lxLmvesMLkpaG6kgw1JccVa2pDDeEml3QOLnZzR-_eJx2iWLvJD2mlIIwwzDDOUVKXO7U9L3htxOhtL_1GYCS2mQom9pkme7WzQdn4G87_8Ifzf1CMjaE_1K2GtA</recordid><startdate>20210510</startdate><enddate>20210510</enddate><creator>Chaikasetsin, Settasit</creator><creator>Kodama, Takashi</creator><creator>Bae, Kiho</creator><creator>Jung, Jun Young</creator><creator>Shin, Jeeyoung</creator><creator>Lee, Byung Chul</creator><creator>Kim, Brian S. Y.</creator><creator>Seo, Jungju</creator><creator>Sim, Uk</creator><creator>Prinz, Fritz B.</creator><creator>Goodson, Kenneth E.</creator><creator>Park, Woosung</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4661-0878</orcidid><orcidid>https://orcid.org/0000-0002-7702-716X</orcidid><orcidid>https://orcid.org/0000-0001-6281-9407</orcidid><orcidid>https://orcid.org/0000-0002-8753-5766</orcidid><orcidid>https://orcid.org/0000-0001-7767-495X</orcidid><orcidid>https://orcid.org/0000-0001-9119-3781</orcidid></search><sort><creationdate>20210510</creationdate><title>Thermal expansion characterization of thin films using harmonic Joule heating combined with atomic force microscopy</title><author>Chaikasetsin, Settasit ; Kodama, Takashi ; Bae, Kiho ; Jung, Jun Young ; Shin, Jeeyoung ; Lee, Byung Chul ; Kim, Brian S. Y. ; Seo, Jungju ; Sim, Uk ; Prinz, Fritz B. ; Goodson, Kenneth E. ; Park, Woosung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-9f2a2202435bf836cabfd1293263a314ab6d57f48f3e9a50d86195dbf3f26f4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applied physics</topic><topic>Atomic force microscopy</topic><topic>Mechanical properties</topic><topic>Microscopy</topic><topic>Ohmic dissipation</topic><topic>Polymethyl methacrylate</topic><topic>Resistance heating</topic><topic>Thermal expansion</topic><topic>Thermodynamic properties</topic><topic>Thickness</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chaikasetsin, Settasit</creatorcontrib><creatorcontrib>Kodama, Takashi</creatorcontrib><creatorcontrib>Bae, Kiho</creatorcontrib><creatorcontrib>Jung, Jun Young</creatorcontrib><creatorcontrib>Shin, Jeeyoung</creatorcontrib><creatorcontrib>Lee, Byung Chul</creatorcontrib><creatorcontrib>Kim, Brian S. Y.</creatorcontrib><creatorcontrib>Seo, Jungju</creatorcontrib><creatorcontrib>Sim, Uk</creatorcontrib><creatorcontrib>Prinz, Fritz B.</creatorcontrib><creatorcontrib>Goodson, Kenneth E.</creatorcontrib><creatorcontrib>Park, Woosung</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chaikasetsin, Settasit</au><au>Kodama, Takashi</au><au>Bae, Kiho</au><au>Jung, Jun Young</au><au>Shin, Jeeyoung</au><au>Lee, Byung Chul</au><au>Kim, Brian S. Y.</au><au>Seo, Jungju</au><au>Sim, Uk</au><au>Prinz, Fritz B.</au><au>Goodson, Kenneth E.</au><au>Park, Woosung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal expansion characterization of thin films using harmonic Joule heating combined with atomic force microscopy</atitle><jtitle>Applied physics letters</jtitle><date>2021-05-10</date><risdate>2021</risdate><volume>118</volume><issue>19</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Characterizing coefficient of thermal expansion (CTE) for thin films is often challenging as the experimental signal is asymptotically reduced with decreasing thickness. Here, we present a method to measure CTE of thin films by locally confining an active thermal volume using harmonic Joule heating. Importantly, we simultaneously probe the harmonic expansion at atomic-scale thickness resolution using atomic force microscopy. We use a differential method on lithographically patterned thin films to isolate the topographical and harmonic thermal expansion contributions of the thin films. Based on the measured thermal expansion, we use numerical simulations to extract the CTE considering the stress induced from neighboring layers. We demonstrate our method using poly(methyl methacrylate), and the measured CTE of 55.0 × 10−6 ± 6.4 × 10−6 K−1 shows agreement with previous works. This work paves an avenue for investigating thermo-mechanical characterization in numerous materials systems, including both organic and inorganic media.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0049160</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-4661-0878</orcidid><orcidid>https://orcid.org/0000-0002-7702-716X</orcidid><orcidid>https://orcid.org/0000-0001-6281-9407</orcidid><orcidid>https://orcid.org/0000-0002-8753-5766</orcidid><orcidid>https://orcid.org/0000-0001-7767-495X</orcidid><orcidid>https://orcid.org/0000-0001-9119-3781</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2021-05, Vol.118 (19)
issn 0003-6951
1077-3118
language eng
recordid cdi_crossref_primary_10_1063_5_0049160
source American Institute of Physics (AIP) Publications; American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Applied physics
Atomic force microscopy
Mechanical properties
Microscopy
Ohmic dissipation
Polymethyl methacrylate
Resistance heating
Thermal expansion
Thermodynamic properties
Thickness
Thin films
title Thermal expansion characterization of thin films using harmonic Joule heating combined with atomic force microscopy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A57%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20expansion%20characterization%20of%20thin%20films%20using%20harmonic%20Joule%20heating%20combined%20with%20atomic%20force%20microscopy&rft.jtitle=Applied%20physics%20letters&rft.au=Chaikasetsin,%20Settasit&rft.date=2021-05-10&rft.volume=118&rft.issue=19&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0049160&rft_dat=%3Cproquest_cross%3E2525151140%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c327t-9f2a2202435bf836cabfd1293263a314ab6d57f48f3e9a50d86195dbf3f26f4a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2525151140&rft_id=info:pmid/&rfr_iscdi=true