Loading…
Thermal expansion characterization of thin films using harmonic Joule heating combined with atomic force microscopy
Characterizing coefficient of thermal expansion (CTE) for thin films is often challenging as the experimental signal is asymptotically reduced with decreasing thickness. Here, we present a method to measure CTE of thin films by locally confining an active thermal volume using harmonic Joule heating....
Saved in:
Published in: | Applied physics letters 2021-05, Vol.118 (19) |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c327t-9f2a2202435bf836cabfd1293263a314ab6d57f48f3e9a50d86195dbf3f26f4a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c327t-9f2a2202435bf836cabfd1293263a314ab6d57f48f3e9a50d86195dbf3f26f4a3 |
container_end_page | |
container_issue | 19 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 118 |
creator | Chaikasetsin, Settasit Kodama, Takashi Bae, Kiho Jung, Jun Young Shin, Jeeyoung Lee, Byung Chul Kim, Brian S. Y. Seo, Jungju Sim, Uk Prinz, Fritz B. Goodson, Kenneth E. Park, Woosung |
description | Characterizing coefficient of thermal expansion (CTE) for thin films is often challenging as the experimental signal is asymptotically reduced with decreasing thickness. Here, we present a method to measure CTE of thin films by locally confining an active thermal volume using harmonic Joule heating. Importantly, we simultaneously probe the harmonic expansion at atomic-scale thickness resolution using atomic force microscopy. We use a differential method on lithographically patterned thin films to isolate the topographical and harmonic thermal expansion contributions of the thin films. Based on the measured thermal expansion, we use numerical simulations to extract the CTE considering the stress induced from neighboring layers. We demonstrate our method using poly(methyl methacrylate), and the measured CTE of 55.0 × 10−6 ± 6.4 × 10−6 K−1 shows agreement with previous works. This work paves an avenue for investigating thermo-mechanical characterization in numerous materials systems, including both organic and inorganic media. |
doi_str_mv | 10.1063/5.0049160 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0049160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2525151140</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-9f2a2202435bf836cabfd1293263a314ab6d57f48f3e9a50d86195dbf3f26f4a3</originalsourceid><addsrcrecordid>eNqd0E1LxDAQBuAgCq6rB_9BwJNC13w0aXuUxU8EL-s5pGlis7RNTVJ1_fVm3QXvnjIZHmaGF4BzjBYYcXrNFgjlFeboAMwwKoqMYlweghlCiGa8YvgYnISwTl9GKJ2BsGq172UH9dcoh2DdAFUrvVRRe_st47bhDIytHaCxXR_gFOzwBpPp3WAVfHJTp2GrE01t5fraDrqBnza2UEbXJ2KcVxqmyrug3Lg5BUdGdkGf7d85eL27XS0fsueX-8flzXOmKCliVhkiCUEkp6w2JeVK1qbBpKKEU0lxLmvesMLkpaG6kgw1JccVa2pDDeEml3QOLnZzR-_eJx2iWLvJD2mlIIwwzDDOUVKXO7U9L3htxOhtL_1GYCS2mQom9pkme7WzQdn4G87_8Ifzf1CMjaE_1K2GtA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2525151140</pqid></control><display><type>article</type><title>Thermal expansion characterization of thin films using harmonic Joule heating combined with atomic force microscopy</title><source>American Institute of Physics (AIP) Publications</source><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Chaikasetsin, Settasit ; Kodama, Takashi ; Bae, Kiho ; Jung, Jun Young ; Shin, Jeeyoung ; Lee, Byung Chul ; Kim, Brian S. Y. ; Seo, Jungju ; Sim, Uk ; Prinz, Fritz B. ; Goodson, Kenneth E. ; Park, Woosung</creator><creatorcontrib>Chaikasetsin, Settasit ; Kodama, Takashi ; Bae, Kiho ; Jung, Jun Young ; Shin, Jeeyoung ; Lee, Byung Chul ; Kim, Brian S. Y. ; Seo, Jungju ; Sim, Uk ; Prinz, Fritz B. ; Goodson, Kenneth E. ; Park, Woosung</creatorcontrib><description>Characterizing coefficient of thermal expansion (CTE) for thin films is often challenging as the experimental signal is asymptotically reduced with decreasing thickness. Here, we present a method to measure CTE of thin films by locally confining an active thermal volume using harmonic Joule heating. Importantly, we simultaneously probe the harmonic expansion at atomic-scale thickness resolution using atomic force microscopy. We use a differential method on lithographically patterned thin films to isolate the topographical and harmonic thermal expansion contributions of the thin films. Based on the measured thermal expansion, we use numerical simulations to extract the CTE considering the stress induced from neighboring layers. We demonstrate our method using poly(methyl methacrylate), and the measured CTE of 55.0 × 10−6 ± 6.4 × 10−6 K−1 shows agreement with previous works. This work paves an avenue for investigating thermo-mechanical characterization in numerous materials systems, including both organic and inorganic media.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0049160</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Atomic force microscopy ; Mechanical properties ; Microscopy ; Ohmic dissipation ; Polymethyl methacrylate ; Resistance heating ; Thermal expansion ; Thermodynamic properties ; Thickness ; Thin films</subject><ispartof>Applied physics letters, 2021-05, Vol.118 (19)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-9f2a2202435bf836cabfd1293263a314ab6d57f48f3e9a50d86195dbf3f26f4a3</citedby><cites>FETCH-LOGICAL-c327t-9f2a2202435bf836cabfd1293263a314ab6d57f48f3e9a50d86195dbf3f26f4a3</cites><orcidid>0000-0003-4661-0878 ; 0000-0002-7702-716X ; 0000-0001-6281-9407 ; 0000-0002-8753-5766 ; 0000-0001-7767-495X ; 0000-0001-9119-3781</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0049160$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,782,784,795,27924,27925,76383</link.rule.ids></links><search><creatorcontrib>Chaikasetsin, Settasit</creatorcontrib><creatorcontrib>Kodama, Takashi</creatorcontrib><creatorcontrib>Bae, Kiho</creatorcontrib><creatorcontrib>Jung, Jun Young</creatorcontrib><creatorcontrib>Shin, Jeeyoung</creatorcontrib><creatorcontrib>Lee, Byung Chul</creatorcontrib><creatorcontrib>Kim, Brian S. Y.</creatorcontrib><creatorcontrib>Seo, Jungju</creatorcontrib><creatorcontrib>Sim, Uk</creatorcontrib><creatorcontrib>Prinz, Fritz B.</creatorcontrib><creatorcontrib>Goodson, Kenneth E.</creatorcontrib><creatorcontrib>Park, Woosung</creatorcontrib><title>Thermal expansion characterization of thin films using harmonic Joule heating combined with atomic force microscopy</title><title>Applied physics letters</title><description>Characterizing coefficient of thermal expansion (CTE) for thin films is often challenging as the experimental signal is asymptotically reduced with decreasing thickness. Here, we present a method to measure CTE of thin films by locally confining an active thermal volume using harmonic Joule heating. Importantly, we simultaneously probe the harmonic expansion at atomic-scale thickness resolution using atomic force microscopy. We use a differential method on lithographically patterned thin films to isolate the topographical and harmonic thermal expansion contributions of the thin films. Based on the measured thermal expansion, we use numerical simulations to extract the CTE considering the stress induced from neighboring layers. We demonstrate our method using poly(methyl methacrylate), and the measured CTE of 55.0 × 10−6 ± 6.4 × 10−6 K−1 shows agreement with previous works. This work paves an avenue for investigating thermo-mechanical characterization in numerous materials systems, including both organic and inorganic media.</description><subject>Applied physics</subject><subject>Atomic force microscopy</subject><subject>Mechanical properties</subject><subject>Microscopy</subject><subject>Ohmic dissipation</subject><subject>Polymethyl methacrylate</subject><subject>Resistance heating</subject><subject>Thermal expansion</subject><subject>Thermodynamic properties</subject><subject>Thickness</subject><subject>Thin films</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqd0E1LxDAQBuAgCq6rB_9BwJNC13w0aXuUxU8EL-s5pGlis7RNTVJ1_fVm3QXvnjIZHmaGF4BzjBYYcXrNFgjlFeboAMwwKoqMYlweghlCiGa8YvgYnISwTl9GKJ2BsGq172UH9dcoh2DdAFUrvVRRe_st47bhDIytHaCxXR_gFOzwBpPp3WAVfHJTp2GrE01t5fraDrqBnza2UEbXJ2KcVxqmyrug3Lg5BUdGdkGf7d85eL27XS0fsueX-8flzXOmKCliVhkiCUEkp6w2JeVK1qbBpKKEU0lxLmvesMLkpaG6kgw1JccVa2pDDeEml3QOLnZzR-_eJx2iWLvJD2mlIIwwzDDOUVKXO7U9L3htxOhtL_1GYCS2mQom9pkme7WzQdn4G87_8Ifzf1CMjaE_1K2GtA</recordid><startdate>20210510</startdate><enddate>20210510</enddate><creator>Chaikasetsin, Settasit</creator><creator>Kodama, Takashi</creator><creator>Bae, Kiho</creator><creator>Jung, Jun Young</creator><creator>Shin, Jeeyoung</creator><creator>Lee, Byung Chul</creator><creator>Kim, Brian S. Y.</creator><creator>Seo, Jungju</creator><creator>Sim, Uk</creator><creator>Prinz, Fritz B.</creator><creator>Goodson, Kenneth E.</creator><creator>Park, Woosung</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4661-0878</orcidid><orcidid>https://orcid.org/0000-0002-7702-716X</orcidid><orcidid>https://orcid.org/0000-0001-6281-9407</orcidid><orcidid>https://orcid.org/0000-0002-8753-5766</orcidid><orcidid>https://orcid.org/0000-0001-7767-495X</orcidid><orcidid>https://orcid.org/0000-0001-9119-3781</orcidid></search><sort><creationdate>20210510</creationdate><title>Thermal expansion characterization of thin films using harmonic Joule heating combined with atomic force microscopy</title><author>Chaikasetsin, Settasit ; Kodama, Takashi ; Bae, Kiho ; Jung, Jun Young ; Shin, Jeeyoung ; Lee, Byung Chul ; Kim, Brian S. Y. ; Seo, Jungju ; Sim, Uk ; Prinz, Fritz B. ; Goodson, Kenneth E. ; Park, Woosung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-9f2a2202435bf836cabfd1293263a314ab6d57f48f3e9a50d86195dbf3f26f4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applied physics</topic><topic>Atomic force microscopy</topic><topic>Mechanical properties</topic><topic>Microscopy</topic><topic>Ohmic dissipation</topic><topic>Polymethyl methacrylate</topic><topic>Resistance heating</topic><topic>Thermal expansion</topic><topic>Thermodynamic properties</topic><topic>Thickness</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chaikasetsin, Settasit</creatorcontrib><creatorcontrib>Kodama, Takashi</creatorcontrib><creatorcontrib>Bae, Kiho</creatorcontrib><creatorcontrib>Jung, Jun Young</creatorcontrib><creatorcontrib>Shin, Jeeyoung</creatorcontrib><creatorcontrib>Lee, Byung Chul</creatorcontrib><creatorcontrib>Kim, Brian S. Y.</creatorcontrib><creatorcontrib>Seo, Jungju</creatorcontrib><creatorcontrib>Sim, Uk</creatorcontrib><creatorcontrib>Prinz, Fritz B.</creatorcontrib><creatorcontrib>Goodson, Kenneth E.</creatorcontrib><creatorcontrib>Park, Woosung</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chaikasetsin, Settasit</au><au>Kodama, Takashi</au><au>Bae, Kiho</au><au>Jung, Jun Young</au><au>Shin, Jeeyoung</au><au>Lee, Byung Chul</au><au>Kim, Brian S. Y.</au><au>Seo, Jungju</au><au>Sim, Uk</au><au>Prinz, Fritz B.</au><au>Goodson, Kenneth E.</au><au>Park, Woosung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal expansion characterization of thin films using harmonic Joule heating combined with atomic force microscopy</atitle><jtitle>Applied physics letters</jtitle><date>2021-05-10</date><risdate>2021</risdate><volume>118</volume><issue>19</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Characterizing coefficient of thermal expansion (CTE) for thin films is often challenging as the experimental signal is asymptotically reduced with decreasing thickness. Here, we present a method to measure CTE of thin films by locally confining an active thermal volume using harmonic Joule heating. Importantly, we simultaneously probe the harmonic expansion at atomic-scale thickness resolution using atomic force microscopy. We use a differential method on lithographically patterned thin films to isolate the topographical and harmonic thermal expansion contributions of the thin films. Based on the measured thermal expansion, we use numerical simulations to extract the CTE considering the stress induced from neighboring layers. We demonstrate our method using poly(methyl methacrylate), and the measured CTE of 55.0 × 10−6 ± 6.4 × 10−6 K−1 shows agreement with previous works. This work paves an avenue for investigating thermo-mechanical characterization in numerous materials systems, including both organic and inorganic media.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0049160</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-4661-0878</orcidid><orcidid>https://orcid.org/0000-0002-7702-716X</orcidid><orcidid>https://orcid.org/0000-0001-6281-9407</orcidid><orcidid>https://orcid.org/0000-0002-8753-5766</orcidid><orcidid>https://orcid.org/0000-0001-7767-495X</orcidid><orcidid>https://orcid.org/0000-0001-9119-3781</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2021-05, Vol.118 (19) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_crossref_primary_10_1063_5_0049160 |
source | American Institute of Physics (AIP) Publications; American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Applied physics Atomic force microscopy Mechanical properties Microscopy Ohmic dissipation Polymethyl methacrylate Resistance heating Thermal expansion Thermodynamic properties Thickness Thin films |
title | Thermal expansion characterization of thin films using harmonic Joule heating combined with atomic force microscopy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A57%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20expansion%20characterization%20of%20thin%20films%20using%20harmonic%20Joule%20heating%20combined%20with%20atomic%20force%20microscopy&rft.jtitle=Applied%20physics%20letters&rft.au=Chaikasetsin,%20Settasit&rft.date=2021-05-10&rft.volume=118&rft.issue=19&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0049160&rft_dat=%3Cproquest_cross%3E2525151140%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c327t-9f2a2202435bf836cabfd1293263a314ab6d57f48f3e9a50d86195dbf3f26f4a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2525151140&rft_id=info:pmid/&rfr_iscdi=true |