Loading…
Fragmentation and structural transitions of few-layer graphene under high shear stress
A key factor that determines the mechanical and electrical performance of graphene-based materials and devices is how graphene behaves under extreme conditions, yet the response of few-layer graphene to high shear stress has not been investigated experimentally. Here we applied high pressure and she...
Saved in:
Published in: | Applied physics letters 2021-05, Vol.118 (21) |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A key factor that determines the mechanical and electrical performance of graphene-based materials and devices is how graphene behaves under extreme conditions, yet the response of few-layer graphene to high shear stress has not been investigated experimentally. Here we applied high pressure and shear to graphene powder using a rotational diamond anvil cell and studied the recovered sample with multiple means of characterization. Sustaining high pressure and shear, graphene breaks into nanometer-long clusters with generation of large number of defects. At a certain stress level, it transforms to amorphous state and carbon onions. The reduction of infrared reflectivity in the severely sheared phase indicates the decrease in conductivity. Our results unveil the shear sensitive nature of graphene, point out the effects of shear on its physical properties, and provide a potential method to manipulate this promising material. |
---|---|
ISSN: | 0003-6951 1077-3118 1077-3118 |
DOI: | 10.1063/5.0049592 |