Loading…

Adsorption of gas molecules on Co-doped SnO2 (110): First-principles investigation

First-principles calculations based on density functional theory were employed to study the adsorption of gas molecules (CH4, CO, H2O) on various SnO2 (110) surfaces. We found that CO and CH4 molecules are weakly adsorbed on intrinsic SnO2 (110) surfaces, and intrinsic SnO2 is sensitive only to the...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2021-06, Vol.129 (24)
Main Authors: Lin, Long, Chen, Ruixin, Huang, Jingtao, Zhu, Linghao, Wang, Pengtao, Yan, Longbin, Lou, Mengsi, Chen, Yujin, Tao, Hualong, Zhang, Zhanying
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c257t-a8813e53755107a29d53f0dd1f36879c24d5eaf31b88a3a8c370800961073c953
cites cdi_FETCH-LOGICAL-c257t-a8813e53755107a29d53f0dd1f36879c24d5eaf31b88a3a8c370800961073c953
container_end_page
container_issue 24
container_start_page
container_title Journal of applied physics
container_volume 129
creator Lin, Long
Chen, Ruixin
Huang, Jingtao
Zhu, Linghao
Wang, Pengtao
Yan, Longbin
Lou, Mengsi
Chen, Yujin
Tao, Hualong
Zhang, Zhanying
description First-principles calculations based on density functional theory were employed to study the adsorption of gas molecules (CH4, CO, H2O) on various SnO2 (110) surfaces. We found that CO and CH4 molecules are weakly adsorbed on intrinsic SnO2 (110) surfaces, and intrinsic SnO2 is sensitive only to the H2O molecule. Compared with the gas molecules adsorbed on the intrinsic SnO2 surfaces, the significantly increased adsorption energy indicates that there is an improvement in the gas sensitivity properties of Co-doped SnO2 (Co/SnO2) and oxygen vacancy modified Co-doped SnO2 (Co/VO/SnO2) to CO, CH4, and H2O gas. The CO adsorbed on the Co/VO/SnO2 surface has the strongest adsorption energy (−1.402 eV). We also studied the optical properties of the Co/SnO2 and Co/VO/SnO2 surfaces influenced by the three gas molecules. We found that the three gas molecules cause an enhancement of the adsorption peaks of Co/SnO2 configuration in the visible light range. Our study benefits research on the potential application of SnO2 sensor materials.
doi_str_mv 10.1063/5.0052286
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0052286</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2545721378</sourcerecordid><originalsourceid>FETCH-LOGICAL-c257t-a8813e53755107a29d53f0dd1f36879c24d5eaf31b88a3a8c370800961073c953</originalsourceid><addsrcrecordid>eNp90MtKAzEUBuAgCtbqwjcYcGOFqSdJM0nclWJVKBS8rEPMpUxpJ2MyLfj2prboQnB14PDxnwtClxiGGCp6y4YAjBBRHaEeBiFLzhgcox4AwaWQXJ6is5SWABgLKnvoeWxTiG1Xh6YIvljoVKzDypnNyqUi9yahtKF1tnhp5qS4xhgGd8W0jqkr21g3pm53sG62LnX1Qu9yztGJ16vkLg61j96m96-Tx3I2f3iajGelIYx3pRYCU8doXhAD10RaRj1Yiz2tBJeGjCxz2lP8LoSmWhjKQQDIKmtqJKN9dLXPbWP42OT5ahk2sckjFWEjxgmmXGQ12CsTQ0rReZX3Xuv4qTCo3csUU4eXZXuzt8nU3fctP3gb4i9UrfX_4b_JX_LmdxY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2545721378</pqid></control><display><type>article</type><title>Adsorption of gas molecules on Co-doped SnO2 (110): First-principles investigation</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Lin, Long ; Chen, Ruixin ; Huang, Jingtao ; Zhu, Linghao ; Wang, Pengtao ; Yan, Longbin ; Lou, Mengsi ; Chen, Yujin ; Tao, Hualong ; Zhang, Zhanying</creator><creatorcontrib>Lin, Long ; Chen, Ruixin ; Huang, Jingtao ; Zhu, Linghao ; Wang, Pengtao ; Yan, Longbin ; Lou, Mengsi ; Chen, Yujin ; Tao, Hualong ; Zhang, Zhanying</creatorcontrib><description>First-principles calculations based on density functional theory were employed to study the adsorption of gas molecules (CH4, CO, H2O) on various SnO2 (110) surfaces. We found that CO and CH4 molecules are weakly adsorbed on intrinsic SnO2 (110) surfaces, and intrinsic SnO2 is sensitive only to the H2O molecule. Compared with the gas molecules adsorbed on the intrinsic SnO2 surfaces, the significantly increased adsorption energy indicates that there is an improvement in the gas sensitivity properties of Co-doped SnO2 (Co/SnO2) and oxygen vacancy modified Co-doped SnO2 (Co/VO/SnO2) to CO, CH4, and H2O gas. The CO adsorbed on the Co/VO/SnO2 surface has the strongest adsorption energy (−1.402 eV). We also studied the optical properties of the Co/SnO2 and Co/VO/SnO2 surfaces influenced by the three gas molecules. We found that the three gas molecules cause an enhancement of the adsorption peaks of Co/SnO2 configuration in the visible light range. Our study benefits research on the potential application of SnO2 sensor materials.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0052286</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Adsorption ; Applied physics ; Carbon monoxide ; Density functional theory ; First principles ; Methane ; Optical properties ; Surface chemistry ; Tin dioxide ; Water chemistry</subject><ispartof>Journal of applied physics, 2021-06, Vol.129 (24)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c257t-a8813e53755107a29d53f0dd1f36879c24d5eaf31b88a3a8c370800961073c953</citedby><cites>FETCH-LOGICAL-c257t-a8813e53755107a29d53f0dd1f36879c24d5eaf31b88a3a8c370800961073c953</cites><orcidid>0000-0002-9054-8955 ; 0000-0001-6257-3224 ; 0000-0003-1645-5600</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Lin, Long</creatorcontrib><creatorcontrib>Chen, Ruixin</creatorcontrib><creatorcontrib>Huang, Jingtao</creatorcontrib><creatorcontrib>Zhu, Linghao</creatorcontrib><creatorcontrib>Wang, Pengtao</creatorcontrib><creatorcontrib>Yan, Longbin</creatorcontrib><creatorcontrib>Lou, Mengsi</creatorcontrib><creatorcontrib>Chen, Yujin</creatorcontrib><creatorcontrib>Tao, Hualong</creatorcontrib><creatorcontrib>Zhang, Zhanying</creatorcontrib><title>Adsorption of gas molecules on Co-doped SnO2 (110): First-principles investigation</title><title>Journal of applied physics</title><description>First-principles calculations based on density functional theory were employed to study the adsorption of gas molecules (CH4, CO, H2O) on various SnO2 (110) surfaces. We found that CO and CH4 molecules are weakly adsorbed on intrinsic SnO2 (110) surfaces, and intrinsic SnO2 is sensitive only to the H2O molecule. Compared with the gas molecules adsorbed on the intrinsic SnO2 surfaces, the significantly increased adsorption energy indicates that there is an improvement in the gas sensitivity properties of Co-doped SnO2 (Co/SnO2) and oxygen vacancy modified Co-doped SnO2 (Co/VO/SnO2) to CO, CH4, and H2O gas. The CO adsorbed on the Co/VO/SnO2 surface has the strongest adsorption energy (−1.402 eV). We also studied the optical properties of the Co/SnO2 and Co/VO/SnO2 surfaces influenced by the three gas molecules. We found that the three gas molecules cause an enhancement of the adsorption peaks of Co/SnO2 configuration in the visible light range. Our study benefits research on the potential application of SnO2 sensor materials.</description><subject>Adsorption</subject><subject>Applied physics</subject><subject>Carbon monoxide</subject><subject>Density functional theory</subject><subject>First principles</subject><subject>Methane</subject><subject>Optical properties</subject><subject>Surface chemistry</subject><subject>Tin dioxide</subject><subject>Water chemistry</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp90MtKAzEUBuAgCtbqwjcYcGOFqSdJM0nclWJVKBS8rEPMpUxpJ2MyLfj2prboQnB14PDxnwtClxiGGCp6y4YAjBBRHaEeBiFLzhgcox4AwaWQXJ6is5SWABgLKnvoeWxTiG1Xh6YIvljoVKzDypnNyqUi9yahtKF1tnhp5qS4xhgGd8W0jqkr21g3pm53sG62LnX1Qu9yztGJ16vkLg61j96m96-Tx3I2f3iajGelIYx3pRYCU8doXhAD10RaRj1Yiz2tBJeGjCxz2lP8LoSmWhjKQQDIKmtqJKN9dLXPbWP42OT5ahk2sckjFWEjxgmmXGQ12CsTQ0rReZX3Xuv4qTCo3csUU4eXZXuzt8nU3fctP3gb4i9UrfX_4b_JX_LmdxY</recordid><startdate>20210628</startdate><enddate>20210628</enddate><creator>Lin, Long</creator><creator>Chen, Ruixin</creator><creator>Huang, Jingtao</creator><creator>Zhu, Linghao</creator><creator>Wang, Pengtao</creator><creator>Yan, Longbin</creator><creator>Lou, Mengsi</creator><creator>Chen, Yujin</creator><creator>Tao, Hualong</creator><creator>Zhang, Zhanying</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9054-8955</orcidid><orcidid>https://orcid.org/0000-0001-6257-3224</orcidid><orcidid>https://orcid.org/0000-0003-1645-5600</orcidid></search><sort><creationdate>20210628</creationdate><title>Adsorption of gas molecules on Co-doped SnO2 (110): First-principles investigation</title><author>Lin, Long ; Chen, Ruixin ; Huang, Jingtao ; Zhu, Linghao ; Wang, Pengtao ; Yan, Longbin ; Lou, Mengsi ; Chen, Yujin ; Tao, Hualong ; Zhang, Zhanying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c257t-a8813e53755107a29d53f0dd1f36879c24d5eaf31b88a3a8c370800961073c953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adsorption</topic><topic>Applied physics</topic><topic>Carbon monoxide</topic><topic>Density functional theory</topic><topic>First principles</topic><topic>Methane</topic><topic>Optical properties</topic><topic>Surface chemistry</topic><topic>Tin dioxide</topic><topic>Water chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Long</creatorcontrib><creatorcontrib>Chen, Ruixin</creatorcontrib><creatorcontrib>Huang, Jingtao</creatorcontrib><creatorcontrib>Zhu, Linghao</creatorcontrib><creatorcontrib>Wang, Pengtao</creatorcontrib><creatorcontrib>Yan, Longbin</creatorcontrib><creatorcontrib>Lou, Mengsi</creatorcontrib><creatorcontrib>Chen, Yujin</creatorcontrib><creatorcontrib>Tao, Hualong</creatorcontrib><creatorcontrib>Zhang, Zhanying</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Long</au><au>Chen, Ruixin</au><au>Huang, Jingtao</au><au>Zhu, Linghao</au><au>Wang, Pengtao</au><au>Yan, Longbin</au><au>Lou, Mengsi</au><au>Chen, Yujin</au><au>Tao, Hualong</au><au>Zhang, Zhanying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adsorption of gas molecules on Co-doped SnO2 (110): First-principles investigation</atitle><jtitle>Journal of applied physics</jtitle><date>2021-06-28</date><risdate>2021</risdate><volume>129</volume><issue>24</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>First-principles calculations based on density functional theory were employed to study the adsorption of gas molecules (CH4, CO, H2O) on various SnO2 (110) surfaces. We found that CO and CH4 molecules are weakly adsorbed on intrinsic SnO2 (110) surfaces, and intrinsic SnO2 is sensitive only to the H2O molecule. Compared with the gas molecules adsorbed on the intrinsic SnO2 surfaces, the significantly increased adsorption energy indicates that there is an improvement in the gas sensitivity properties of Co-doped SnO2 (Co/SnO2) and oxygen vacancy modified Co-doped SnO2 (Co/VO/SnO2) to CO, CH4, and H2O gas. The CO adsorbed on the Co/VO/SnO2 surface has the strongest adsorption energy (−1.402 eV). We also studied the optical properties of the Co/SnO2 and Co/VO/SnO2 surfaces influenced by the three gas molecules. We found that the three gas molecules cause an enhancement of the adsorption peaks of Co/SnO2 configuration in the visible light range. Our study benefits research on the potential application of SnO2 sensor materials.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0052286</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9054-8955</orcidid><orcidid>https://orcid.org/0000-0001-6257-3224</orcidid><orcidid>https://orcid.org/0000-0003-1645-5600</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2021-06, Vol.129 (24)
issn 0021-8979
1089-7550
language eng
recordid cdi_crossref_primary_10_1063_5_0052286
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Adsorption
Applied physics
Carbon monoxide
Density functional theory
First principles
Methane
Optical properties
Surface chemistry
Tin dioxide
Water chemistry
title Adsorption of gas molecules on Co-doped SnO2 (110): First-principles investigation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T10%3A26%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adsorption%20of%20gas%20molecules%20on%20Co-doped%20SnO2%20(110):%20First-principles%20investigation&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Lin,%20Long&rft.date=2021-06-28&rft.volume=129&rft.issue=24&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0052286&rft_dat=%3Cproquest_cross%3E2545721378%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c257t-a8813e53755107a29d53f0dd1f36879c24d5eaf31b88a3a8c370800961073c953%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2545721378&rft_id=info:pmid/&rfr_iscdi=true