Loading…
Adsorption of gas molecules on Co-doped SnO2 (110): First-principles investigation
First-principles calculations based on density functional theory were employed to study the adsorption of gas molecules (CH4, CO, H2O) on various SnO2 (110) surfaces. We found that CO and CH4 molecules are weakly adsorbed on intrinsic SnO2 (110) surfaces, and intrinsic SnO2 is sensitive only to the...
Saved in:
Published in: | Journal of applied physics 2021-06, Vol.129 (24) |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c257t-a8813e53755107a29d53f0dd1f36879c24d5eaf31b88a3a8c370800961073c953 |
---|---|
cites | cdi_FETCH-LOGICAL-c257t-a8813e53755107a29d53f0dd1f36879c24d5eaf31b88a3a8c370800961073c953 |
container_end_page | |
container_issue | 24 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 129 |
creator | Lin, Long Chen, Ruixin Huang, Jingtao Zhu, Linghao Wang, Pengtao Yan, Longbin Lou, Mengsi Chen, Yujin Tao, Hualong Zhang, Zhanying |
description | First-principles calculations based on density functional theory were employed to study the adsorption of gas molecules (CH4, CO, H2O) on various SnO2 (110) surfaces. We found that CO and CH4 molecules are weakly adsorbed on intrinsic SnO2 (110) surfaces, and intrinsic SnO2 is sensitive only to the H2O molecule. Compared with the gas molecules adsorbed on the intrinsic SnO2 surfaces, the significantly increased adsorption energy indicates that there is an improvement in the gas sensitivity properties of Co-doped SnO2 (Co/SnO2) and oxygen vacancy modified Co-doped SnO2 (Co/VO/SnO2) to CO, CH4, and H2O gas. The CO adsorbed on the Co/VO/SnO2 surface has the strongest adsorption energy (−1.402 eV). We also studied the optical properties of the Co/SnO2 and Co/VO/SnO2 surfaces influenced by the three gas molecules. We found that the three gas molecules cause an enhancement of the adsorption peaks of Co/SnO2 configuration in the visible light range. Our study benefits research on the potential application of SnO2 sensor materials. |
doi_str_mv | 10.1063/5.0052286 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0052286</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2545721378</sourcerecordid><originalsourceid>FETCH-LOGICAL-c257t-a8813e53755107a29d53f0dd1f36879c24d5eaf31b88a3a8c370800961073c953</originalsourceid><addsrcrecordid>eNp90MtKAzEUBuAgCtbqwjcYcGOFqSdJM0nclWJVKBS8rEPMpUxpJ2MyLfj2prboQnB14PDxnwtClxiGGCp6y4YAjBBRHaEeBiFLzhgcox4AwaWQXJ6is5SWABgLKnvoeWxTiG1Xh6YIvljoVKzDypnNyqUi9yahtKF1tnhp5qS4xhgGd8W0jqkr21g3pm53sG62LnX1Qu9yztGJ16vkLg61j96m96-Tx3I2f3iajGelIYx3pRYCU8doXhAD10RaRj1Yiz2tBJeGjCxz2lP8LoSmWhjKQQDIKmtqJKN9dLXPbWP42OT5ahk2sckjFWEjxgmmXGQ12CsTQ0rReZX3Xuv4qTCo3csUU4eXZXuzt8nU3fctP3gb4i9UrfX_4b_JX_LmdxY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2545721378</pqid></control><display><type>article</type><title>Adsorption of gas molecules on Co-doped SnO2 (110): First-principles investigation</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Lin, Long ; Chen, Ruixin ; Huang, Jingtao ; Zhu, Linghao ; Wang, Pengtao ; Yan, Longbin ; Lou, Mengsi ; Chen, Yujin ; Tao, Hualong ; Zhang, Zhanying</creator><creatorcontrib>Lin, Long ; Chen, Ruixin ; Huang, Jingtao ; Zhu, Linghao ; Wang, Pengtao ; Yan, Longbin ; Lou, Mengsi ; Chen, Yujin ; Tao, Hualong ; Zhang, Zhanying</creatorcontrib><description>First-principles calculations based on density functional theory were employed to study the adsorption of gas molecules (CH4, CO, H2O) on various SnO2 (110) surfaces. We found that CO and CH4 molecules are weakly adsorbed on intrinsic SnO2 (110) surfaces, and intrinsic SnO2 is sensitive only to the H2O molecule. Compared with the gas molecules adsorbed on the intrinsic SnO2 surfaces, the significantly increased adsorption energy indicates that there is an improvement in the gas sensitivity properties of Co-doped SnO2 (Co/SnO2) and oxygen vacancy modified Co-doped SnO2 (Co/VO/SnO2) to CO, CH4, and H2O gas. The CO adsorbed on the Co/VO/SnO2 surface has the strongest adsorption energy (−1.402 eV). We also studied the optical properties of the Co/SnO2 and Co/VO/SnO2 surfaces influenced by the three gas molecules. We found that the three gas molecules cause an enhancement of the adsorption peaks of Co/SnO2 configuration in the visible light range. Our study benefits research on the potential application of SnO2 sensor materials.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0052286</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Adsorption ; Applied physics ; Carbon monoxide ; Density functional theory ; First principles ; Methane ; Optical properties ; Surface chemistry ; Tin dioxide ; Water chemistry</subject><ispartof>Journal of applied physics, 2021-06, Vol.129 (24)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c257t-a8813e53755107a29d53f0dd1f36879c24d5eaf31b88a3a8c370800961073c953</citedby><cites>FETCH-LOGICAL-c257t-a8813e53755107a29d53f0dd1f36879c24d5eaf31b88a3a8c370800961073c953</cites><orcidid>0000-0002-9054-8955 ; 0000-0001-6257-3224 ; 0000-0003-1645-5600</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Lin, Long</creatorcontrib><creatorcontrib>Chen, Ruixin</creatorcontrib><creatorcontrib>Huang, Jingtao</creatorcontrib><creatorcontrib>Zhu, Linghao</creatorcontrib><creatorcontrib>Wang, Pengtao</creatorcontrib><creatorcontrib>Yan, Longbin</creatorcontrib><creatorcontrib>Lou, Mengsi</creatorcontrib><creatorcontrib>Chen, Yujin</creatorcontrib><creatorcontrib>Tao, Hualong</creatorcontrib><creatorcontrib>Zhang, Zhanying</creatorcontrib><title>Adsorption of gas molecules on Co-doped SnO2 (110): First-principles investigation</title><title>Journal of applied physics</title><description>First-principles calculations based on density functional theory were employed to study the adsorption of gas molecules (CH4, CO, H2O) on various SnO2 (110) surfaces. We found that CO and CH4 molecules are weakly adsorbed on intrinsic SnO2 (110) surfaces, and intrinsic SnO2 is sensitive only to the H2O molecule. Compared with the gas molecules adsorbed on the intrinsic SnO2 surfaces, the significantly increased adsorption energy indicates that there is an improvement in the gas sensitivity properties of Co-doped SnO2 (Co/SnO2) and oxygen vacancy modified Co-doped SnO2 (Co/VO/SnO2) to CO, CH4, and H2O gas. The CO adsorbed on the Co/VO/SnO2 surface has the strongest adsorption energy (−1.402 eV). We also studied the optical properties of the Co/SnO2 and Co/VO/SnO2 surfaces influenced by the three gas molecules. We found that the three gas molecules cause an enhancement of the adsorption peaks of Co/SnO2 configuration in the visible light range. Our study benefits research on the potential application of SnO2 sensor materials.</description><subject>Adsorption</subject><subject>Applied physics</subject><subject>Carbon monoxide</subject><subject>Density functional theory</subject><subject>First principles</subject><subject>Methane</subject><subject>Optical properties</subject><subject>Surface chemistry</subject><subject>Tin dioxide</subject><subject>Water chemistry</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp90MtKAzEUBuAgCtbqwjcYcGOFqSdJM0nclWJVKBS8rEPMpUxpJ2MyLfj2prboQnB14PDxnwtClxiGGCp6y4YAjBBRHaEeBiFLzhgcox4AwaWQXJ6is5SWABgLKnvoeWxTiG1Xh6YIvljoVKzDypnNyqUi9yahtKF1tnhp5qS4xhgGd8W0jqkr21g3pm53sG62LnX1Qu9yztGJ16vkLg61j96m96-Tx3I2f3iajGelIYx3pRYCU8doXhAD10RaRj1Yiz2tBJeGjCxz2lP8LoSmWhjKQQDIKmtqJKN9dLXPbWP42OT5ahk2sckjFWEjxgmmXGQ12CsTQ0rReZX3Xuv4qTCo3csUU4eXZXuzt8nU3fctP3gb4i9UrfX_4b_JX_LmdxY</recordid><startdate>20210628</startdate><enddate>20210628</enddate><creator>Lin, Long</creator><creator>Chen, Ruixin</creator><creator>Huang, Jingtao</creator><creator>Zhu, Linghao</creator><creator>Wang, Pengtao</creator><creator>Yan, Longbin</creator><creator>Lou, Mengsi</creator><creator>Chen, Yujin</creator><creator>Tao, Hualong</creator><creator>Zhang, Zhanying</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9054-8955</orcidid><orcidid>https://orcid.org/0000-0001-6257-3224</orcidid><orcidid>https://orcid.org/0000-0003-1645-5600</orcidid></search><sort><creationdate>20210628</creationdate><title>Adsorption of gas molecules on Co-doped SnO2 (110): First-principles investigation</title><author>Lin, Long ; Chen, Ruixin ; Huang, Jingtao ; Zhu, Linghao ; Wang, Pengtao ; Yan, Longbin ; Lou, Mengsi ; Chen, Yujin ; Tao, Hualong ; Zhang, Zhanying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c257t-a8813e53755107a29d53f0dd1f36879c24d5eaf31b88a3a8c370800961073c953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adsorption</topic><topic>Applied physics</topic><topic>Carbon monoxide</topic><topic>Density functional theory</topic><topic>First principles</topic><topic>Methane</topic><topic>Optical properties</topic><topic>Surface chemistry</topic><topic>Tin dioxide</topic><topic>Water chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Long</creatorcontrib><creatorcontrib>Chen, Ruixin</creatorcontrib><creatorcontrib>Huang, Jingtao</creatorcontrib><creatorcontrib>Zhu, Linghao</creatorcontrib><creatorcontrib>Wang, Pengtao</creatorcontrib><creatorcontrib>Yan, Longbin</creatorcontrib><creatorcontrib>Lou, Mengsi</creatorcontrib><creatorcontrib>Chen, Yujin</creatorcontrib><creatorcontrib>Tao, Hualong</creatorcontrib><creatorcontrib>Zhang, Zhanying</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Long</au><au>Chen, Ruixin</au><au>Huang, Jingtao</au><au>Zhu, Linghao</au><au>Wang, Pengtao</au><au>Yan, Longbin</au><au>Lou, Mengsi</au><au>Chen, Yujin</au><au>Tao, Hualong</au><au>Zhang, Zhanying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adsorption of gas molecules on Co-doped SnO2 (110): First-principles investigation</atitle><jtitle>Journal of applied physics</jtitle><date>2021-06-28</date><risdate>2021</risdate><volume>129</volume><issue>24</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>First-principles calculations based on density functional theory were employed to study the adsorption of gas molecules (CH4, CO, H2O) on various SnO2 (110) surfaces. We found that CO and CH4 molecules are weakly adsorbed on intrinsic SnO2 (110) surfaces, and intrinsic SnO2 is sensitive only to the H2O molecule. Compared with the gas molecules adsorbed on the intrinsic SnO2 surfaces, the significantly increased adsorption energy indicates that there is an improvement in the gas sensitivity properties of Co-doped SnO2 (Co/SnO2) and oxygen vacancy modified Co-doped SnO2 (Co/VO/SnO2) to CO, CH4, and H2O gas. The CO adsorbed on the Co/VO/SnO2 surface has the strongest adsorption energy (−1.402 eV). We also studied the optical properties of the Co/SnO2 and Co/VO/SnO2 surfaces influenced by the three gas molecules. We found that the three gas molecules cause an enhancement of the adsorption peaks of Co/SnO2 configuration in the visible light range. Our study benefits research on the potential application of SnO2 sensor materials.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0052286</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9054-8955</orcidid><orcidid>https://orcid.org/0000-0001-6257-3224</orcidid><orcidid>https://orcid.org/0000-0003-1645-5600</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2021-06, Vol.129 (24) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_crossref_primary_10_1063_5_0052286 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Adsorption Applied physics Carbon monoxide Density functional theory First principles Methane Optical properties Surface chemistry Tin dioxide Water chemistry |
title | Adsorption of gas molecules on Co-doped SnO2 (110): First-principles investigation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T10%3A26%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adsorption%20of%20gas%20molecules%20on%20Co-doped%20SnO2%20(110):%20First-principles%20investigation&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Lin,%20Long&rft.date=2021-06-28&rft.volume=129&rft.issue=24&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0052286&rft_dat=%3Cproquest_cross%3E2545721378%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c257t-a8813e53755107a29d53f0dd1f36879c24d5eaf31b88a3a8c370800961073c953%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2545721378&rft_id=info:pmid/&rfr_iscdi=true |