Loading…

Room temperature depinning of the charge-density waves in quasi-two-dimensional 1T-TaS2 devices

We report on the depinning of nearly commensurate charge-density waves in 1T-TaS2 thin films at room temperature. A combination of the differential current–voltage measurements with the low-frequency noise spectroscopy provides unambiguous means for detecting the depinning threshold field in quasi-2...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2021-05, Vol.118 (22)
Main Authors: Mohammadzadeh, A., Rehman, A., Kargar, F., Rumyantsev, S., Smulko, J. M., Knap, W., Lake, R. K., Balandin, A. A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We report on the depinning of nearly commensurate charge-density waves in 1T-TaS2 thin films at room temperature. A combination of the differential current–voltage measurements with the low-frequency noise spectroscopy provides unambiguous means for detecting the depinning threshold field in quasi-2D materials. The depinning process in 1T-TaS2 is not accompanied by an observable abrupt increase in electric current—in striking contrast to depinning in the conventional charge-density-wave materials with quasi-1D crystal structure. We explained it by the fact that the current density from the charge-density waves in the 1T-TaS2 devices is orders of magnitude smaller than the current density of the free carriers available in the discommensuration network surrounding the commensurate charge-density wave islands. The depinning fields in 1T-TaS2 thin-film devices are several orders of magnitude larger than those in quasi-1D van der Waals materials. Obtained results are important for the proposed applications of the charge-density wave devices in electronics.
ISSN:0003-6951
1077-3118
DOI:10.1063/5.0055401