Loading…

Generalized Taylor dispersion for translationally invariant microfluidic systems

We consider Taylor dispersion for tracer particles in microfluidic planar channels with strong confinement. In this context, the channel walls modify the local diffusivity tensor and also interactions between the tracer particles and the walls become important. We provide a simple and general formul...

Full description

Saved in:
Bibliographic Details
Published in:Physics of fluids (1994) 2021-08, Vol.33 (8)
Main Authors: Alexandre, A., Guérin, T., Dean, D. S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c361t-9f1af68c9e7ebb694588acdead52c6f1281dcacde174d3274a5dc7360104a30d3
cites cdi_FETCH-LOGICAL-c361t-9f1af68c9e7ebb694588acdead52c6f1281dcacde174d3274a5dc7360104a30d3
container_end_page
container_issue 8
container_start_page
container_title Physics of fluids (1994)
container_volume 33
creator Alexandre, A.
Guérin, T.
Dean, D. S.
description We consider Taylor dispersion for tracer particles in microfluidic planar channels with strong confinement. In this context, the channel walls modify the local diffusivity tensor and also interactions between the tracer particles and the walls become important. We provide a simple and general formula for the effective diffusion constant along the channel as well as the first non-trivial finite time correction for arbitrary flows along the channel, arbitrary interaction potentials with the walls, and arbitrary expressions for the diffusion tensor. The formulas are in particular amenable to a straightforward numerical implementation, rendering them extremely useful for comparison with experiments. We present a number of applications, notably for systems that have parabolically varying diffusivity profiles, to systems with attractive interactions with the walls as well as electro-osmotic flows between plates with differing surface charges within the Debye–Hückel approximation.
doi_str_mv 10.1063/5.0057584
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0057584</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2558836773</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-9f1af68c9e7ebb694588acdead52c6f1281dcacde174d3274a5dc7360104a30d3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKsHv8GCJ4WtyWaT7B5L0VYo6KGewzR_MCXdrUlaWD-9u7bozdPMPH684T2EbgmeEMzpI5tgzASryjM0Iriqc8E5Px92gXPOKblEVzFuMMa0LvgIvc1NYwJ492V0toLOtyHTLu5MiK5tMtufKUATPaT-Bu-7zDUHCA6alG2dCq31e6edymIXk9nGa3RhwUdzc5pj9P78tJot8uXr_GU2XeaKcpLy2hKwvFK1EWa95nXJqgqUNqBZobglRUW0GgQiSk0LUQLTSlCOCS6BYk3H6P7o-wFe7oLbQuhkC04upks5aJiWpBKCHUjP3h3ZXWg_9yYmuWn3oU8TZcH6x5QLQf8c-1AxBmN_bQmWQ7mSyVO5PftwZKNy6aeaf-Bvl3d6GA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2558836773</pqid></control><display><type>article</type><title>Generalized Taylor dispersion for translationally invariant microfluidic systems</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP Digital Archive</source><creator>Alexandre, A. ; Guérin, T. ; Dean, D. S.</creator><creatorcontrib>Alexandre, A. ; Guérin, T. ; Dean, D. S.</creatorcontrib><description>We consider Taylor dispersion for tracer particles in microfluidic planar channels with strong confinement. In this context, the channel walls modify the local diffusivity tensor and also interactions between the tracer particles and the walls become important. We provide a simple and general formula for the effective diffusion constant along the channel as well as the first non-trivial finite time correction for arbitrary flows along the channel, arbitrary interaction potentials with the walls, and arbitrary expressions for the diffusion tensor. The formulas are in particular amenable to a straightforward numerical implementation, rendering them extremely useful for comparison with experiments. We present a number of applications, notably for systems that have parabolically varying diffusivity profiles, to systems with attractive interactions with the walls as well as electro-osmotic flows between plates with differing surface charges within the Debye–Hückel approximation.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0057584</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Condensed Matter ; Diffusivity ; Electroosmosis ; Fluid dynamics ; Mathematical analysis ; Microfluidics ; Physics ; Statistical Mechanics ; Tensors ; Tracer particles ; Walls</subject><ispartof>Physics of fluids (1994), 2021-08, Vol.33 (8)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under an exclusive license by AIP Publishing.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-9f1af68c9e7ebb694588acdead52c6f1281dcacde174d3274a5dc7360104a30d3</citedby><cites>FETCH-LOGICAL-c361t-9f1af68c9e7ebb694588acdead52c6f1281dcacde174d3274a5dc7360104a30d3</cites><orcidid>0000-0001-5231-6427 ; 0000-0002-6979-7770</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,1559,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03418775$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Alexandre, A.</creatorcontrib><creatorcontrib>Guérin, T.</creatorcontrib><creatorcontrib>Dean, D. S.</creatorcontrib><title>Generalized Taylor dispersion for translationally invariant microfluidic systems</title><title>Physics of fluids (1994)</title><description>We consider Taylor dispersion for tracer particles in microfluidic planar channels with strong confinement. In this context, the channel walls modify the local diffusivity tensor and also interactions between the tracer particles and the walls become important. We provide a simple and general formula for the effective diffusion constant along the channel as well as the first non-trivial finite time correction for arbitrary flows along the channel, arbitrary interaction potentials with the walls, and arbitrary expressions for the diffusion tensor. The formulas are in particular amenable to a straightforward numerical implementation, rendering them extremely useful for comparison with experiments. We present a number of applications, notably for systems that have parabolically varying diffusivity profiles, to systems with attractive interactions with the walls as well as electro-osmotic flows between plates with differing surface charges within the Debye–Hückel approximation.</description><subject>Condensed Matter</subject><subject>Diffusivity</subject><subject>Electroosmosis</subject><subject>Fluid dynamics</subject><subject>Mathematical analysis</subject><subject>Microfluidics</subject><subject>Physics</subject><subject>Statistical Mechanics</subject><subject>Tensors</subject><subject>Tracer particles</subject><subject>Walls</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKsHv8GCJ4WtyWaT7B5L0VYo6KGewzR_MCXdrUlaWD-9u7bozdPMPH684T2EbgmeEMzpI5tgzASryjM0Iriqc8E5Px92gXPOKblEVzFuMMa0LvgIvc1NYwJ492V0toLOtyHTLu5MiK5tMtufKUATPaT-Bu-7zDUHCA6alG2dCq31e6edymIXk9nGa3RhwUdzc5pj9P78tJot8uXr_GU2XeaKcpLy2hKwvFK1EWa95nXJqgqUNqBZobglRUW0GgQiSk0LUQLTSlCOCS6BYk3H6P7o-wFe7oLbQuhkC04upks5aJiWpBKCHUjP3h3ZXWg_9yYmuWn3oU8TZcH6x5QLQf8c-1AxBmN_bQmWQ7mSyVO5PftwZKNy6aeaf-Bvl3d6GA</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Alexandre, A.</creator><creator>Guérin, T.</creator><creator>Dean, D. S.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-5231-6427</orcidid><orcidid>https://orcid.org/0000-0002-6979-7770</orcidid></search><sort><creationdate>20210801</creationdate><title>Generalized Taylor dispersion for translationally invariant microfluidic systems</title><author>Alexandre, A. ; Guérin, T. ; Dean, D. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-9f1af68c9e7ebb694588acdead52c6f1281dcacde174d3274a5dc7360104a30d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Condensed Matter</topic><topic>Diffusivity</topic><topic>Electroosmosis</topic><topic>Fluid dynamics</topic><topic>Mathematical analysis</topic><topic>Microfluidics</topic><topic>Physics</topic><topic>Statistical Mechanics</topic><topic>Tensors</topic><topic>Tracer particles</topic><topic>Walls</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alexandre, A.</creatorcontrib><creatorcontrib>Guérin, T.</creatorcontrib><creatorcontrib>Dean, D. S.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alexandre, A.</au><au>Guérin, T.</au><au>Dean, D. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized Taylor dispersion for translationally invariant microfluidic systems</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2021-08-01</date><risdate>2021</risdate><volume>33</volume><issue>8</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>We consider Taylor dispersion for tracer particles in microfluidic planar channels with strong confinement. In this context, the channel walls modify the local diffusivity tensor and also interactions between the tracer particles and the walls become important. We provide a simple and general formula for the effective diffusion constant along the channel as well as the first non-trivial finite time correction for arbitrary flows along the channel, arbitrary interaction potentials with the walls, and arbitrary expressions for the diffusion tensor. The formulas are in particular amenable to a straightforward numerical implementation, rendering them extremely useful for comparison with experiments. We present a number of applications, notably for systems that have parabolically varying diffusivity profiles, to systems with attractive interactions with the walls as well as electro-osmotic flows between plates with differing surface charges within the Debye–Hückel approximation.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0057584</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-5231-6427</orcidid><orcidid>https://orcid.org/0000-0002-6979-7770</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2021-08, Vol.33 (8)
issn 1070-6631
1089-7666
language eng
recordid cdi_crossref_primary_10_1063_5_0057584
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP Digital Archive
subjects Condensed Matter
Diffusivity
Electroosmosis
Fluid dynamics
Mathematical analysis
Microfluidics
Physics
Statistical Mechanics
Tensors
Tracer particles
Walls
title Generalized Taylor dispersion for translationally invariant microfluidic systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T02%3A00%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20Taylor%20dispersion%20for%20translationally%20invariant%20microfluidic%20systems&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Alexandre,%20A.&rft.date=2021-08-01&rft.volume=33&rft.issue=8&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0057584&rft_dat=%3Cproquest_cross%3E2558836773%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-9f1af68c9e7ebb694588acdead52c6f1281dcacde174d3274a5dc7360104a30d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2558836773&rft_id=info:pmid/&rfr_iscdi=true