Loading…
Generalized Taylor dispersion for translationally invariant microfluidic systems
We consider Taylor dispersion for tracer particles in microfluidic planar channels with strong confinement. In this context, the channel walls modify the local diffusivity tensor and also interactions between the tracer particles and the walls become important. We provide a simple and general formul...
Saved in:
Published in: | Physics of fluids (1994) 2021-08, Vol.33 (8) |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c361t-9f1af68c9e7ebb694588acdead52c6f1281dcacde174d3274a5dc7360104a30d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c361t-9f1af68c9e7ebb694588acdead52c6f1281dcacde174d3274a5dc7360104a30d3 |
container_end_page | |
container_issue | 8 |
container_start_page | |
container_title | Physics of fluids (1994) |
container_volume | 33 |
creator | Alexandre, A. Guérin, T. Dean, D. S. |
description | We consider Taylor dispersion for tracer particles in microfluidic planar channels with strong confinement. In this context, the channel walls modify the local diffusivity tensor and also interactions between the tracer particles and the walls become important. We provide a simple and general formula for the effective diffusion constant along the channel as well as the first non-trivial finite time correction for arbitrary flows along the channel, arbitrary interaction potentials with the walls, and arbitrary expressions for the diffusion tensor. The formulas are in particular amenable to a straightforward numerical implementation, rendering them extremely useful for comparison with experiments. We present a number of applications, notably for systems that have parabolically varying diffusivity profiles, to systems with attractive interactions with the walls as well as electro-osmotic flows between plates with differing surface charges within the Debye–Hückel approximation. |
doi_str_mv | 10.1063/5.0057584 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0057584</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2558836773</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-9f1af68c9e7ebb694588acdead52c6f1281dcacde174d3274a5dc7360104a30d3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKsHv8GCJ4WtyWaT7B5L0VYo6KGewzR_MCXdrUlaWD-9u7bozdPMPH684T2EbgmeEMzpI5tgzASryjM0Iriqc8E5Px92gXPOKblEVzFuMMa0LvgIvc1NYwJ492V0toLOtyHTLu5MiK5tMtufKUATPaT-Bu-7zDUHCA6alG2dCq31e6edymIXk9nGa3RhwUdzc5pj9P78tJot8uXr_GU2XeaKcpLy2hKwvFK1EWa95nXJqgqUNqBZobglRUW0GgQiSk0LUQLTSlCOCS6BYk3H6P7o-wFe7oLbQuhkC04upks5aJiWpBKCHUjP3h3ZXWg_9yYmuWn3oU8TZcH6x5QLQf8c-1AxBmN_bQmWQ7mSyVO5PftwZKNy6aeaf-Bvl3d6GA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2558836773</pqid></control><display><type>article</type><title>Generalized Taylor dispersion for translationally invariant microfluidic systems</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP Digital Archive</source><creator>Alexandre, A. ; Guérin, T. ; Dean, D. S.</creator><creatorcontrib>Alexandre, A. ; Guérin, T. ; Dean, D. S.</creatorcontrib><description>We consider Taylor dispersion for tracer particles in microfluidic planar channels with strong confinement. In this context, the channel walls modify the local diffusivity tensor and also interactions between the tracer particles and the walls become important. We provide a simple and general formula for the effective diffusion constant along the channel as well as the first non-trivial finite time correction for arbitrary flows along the channel, arbitrary interaction potentials with the walls, and arbitrary expressions for the diffusion tensor. The formulas are in particular amenable to a straightforward numerical implementation, rendering them extremely useful for comparison with experiments. We present a number of applications, notably for systems that have parabolically varying diffusivity profiles, to systems with attractive interactions with the walls as well as electro-osmotic flows between plates with differing surface charges within the Debye–Hückel approximation.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0057584</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Condensed Matter ; Diffusivity ; Electroosmosis ; Fluid dynamics ; Mathematical analysis ; Microfluidics ; Physics ; Statistical Mechanics ; Tensors ; Tracer particles ; Walls</subject><ispartof>Physics of fluids (1994), 2021-08, Vol.33 (8)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under an exclusive license by AIP Publishing.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-9f1af68c9e7ebb694588acdead52c6f1281dcacde174d3274a5dc7360104a30d3</citedby><cites>FETCH-LOGICAL-c361t-9f1af68c9e7ebb694588acdead52c6f1281dcacde174d3274a5dc7360104a30d3</cites><orcidid>0000-0001-5231-6427 ; 0000-0002-6979-7770</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,1559,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03418775$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Alexandre, A.</creatorcontrib><creatorcontrib>Guérin, T.</creatorcontrib><creatorcontrib>Dean, D. S.</creatorcontrib><title>Generalized Taylor dispersion for translationally invariant microfluidic systems</title><title>Physics of fluids (1994)</title><description>We consider Taylor dispersion for tracer particles in microfluidic planar channels with strong confinement. In this context, the channel walls modify the local diffusivity tensor and also interactions between the tracer particles and the walls become important. We provide a simple and general formula for the effective diffusion constant along the channel as well as the first non-trivial finite time correction for arbitrary flows along the channel, arbitrary interaction potentials with the walls, and arbitrary expressions for the diffusion tensor. The formulas are in particular amenable to a straightforward numerical implementation, rendering them extremely useful for comparison with experiments. We present a number of applications, notably for systems that have parabolically varying diffusivity profiles, to systems with attractive interactions with the walls as well as electro-osmotic flows between plates with differing surface charges within the Debye–Hückel approximation.</description><subject>Condensed Matter</subject><subject>Diffusivity</subject><subject>Electroosmosis</subject><subject>Fluid dynamics</subject><subject>Mathematical analysis</subject><subject>Microfluidics</subject><subject>Physics</subject><subject>Statistical Mechanics</subject><subject>Tensors</subject><subject>Tracer particles</subject><subject>Walls</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKsHv8GCJ4WtyWaT7B5L0VYo6KGewzR_MCXdrUlaWD-9u7bozdPMPH684T2EbgmeEMzpI5tgzASryjM0Iriqc8E5Px92gXPOKblEVzFuMMa0LvgIvc1NYwJ492V0toLOtyHTLu5MiK5tMtufKUATPaT-Bu-7zDUHCA6alG2dCq31e6edymIXk9nGa3RhwUdzc5pj9P78tJot8uXr_GU2XeaKcpLy2hKwvFK1EWa95nXJqgqUNqBZobglRUW0GgQiSk0LUQLTSlCOCS6BYk3H6P7o-wFe7oLbQuhkC04upks5aJiWpBKCHUjP3h3ZXWg_9yYmuWn3oU8TZcH6x5QLQf8c-1AxBmN_bQmWQ7mSyVO5PftwZKNy6aeaf-Bvl3d6GA</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Alexandre, A.</creator><creator>Guérin, T.</creator><creator>Dean, D. S.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-5231-6427</orcidid><orcidid>https://orcid.org/0000-0002-6979-7770</orcidid></search><sort><creationdate>20210801</creationdate><title>Generalized Taylor dispersion for translationally invariant microfluidic systems</title><author>Alexandre, A. ; Guérin, T. ; Dean, D. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-9f1af68c9e7ebb694588acdead52c6f1281dcacde174d3274a5dc7360104a30d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Condensed Matter</topic><topic>Diffusivity</topic><topic>Electroosmosis</topic><topic>Fluid dynamics</topic><topic>Mathematical analysis</topic><topic>Microfluidics</topic><topic>Physics</topic><topic>Statistical Mechanics</topic><topic>Tensors</topic><topic>Tracer particles</topic><topic>Walls</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alexandre, A.</creatorcontrib><creatorcontrib>Guérin, T.</creatorcontrib><creatorcontrib>Dean, D. S.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alexandre, A.</au><au>Guérin, T.</au><au>Dean, D. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized Taylor dispersion for translationally invariant microfluidic systems</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2021-08-01</date><risdate>2021</risdate><volume>33</volume><issue>8</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>We consider Taylor dispersion for tracer particles in microfluidic planar channels with strong confinement. In this context, the channel walls modify the local diffusivity tensor and also interactions between the tracer particles and the walls become important. We provide a simple and general formula for the effective diffusion constant along the channel as well as the first non-trivial finite time correction for arbitrary flows along the channel, arbitrary interaction potentials with the walls, and arbitrary expressions for the diffusion tensor. The formulas are in particular amenable to a straightforward numerical implementation, rendering them extremely useful for comparison with experiments. We present a number of applications, notably for systems that have parabolically varying diffusivity profiles, to systems with attractive interactions with the walls as well as electro-osmotic flows between plates with differing surface charges within the Debye–Hückel approximation.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0057584</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-5231-6427</orcidid><orcidid>https://orcid.org/0000-0002-6979-7770</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-6631 |
ispartof | Physics of fluids (1994), 2021-08, Vol.33 (8) |
issn | 1070-6631 1089-7666 |
language | eng |
recordid | cdi_crossref_primary_10_1063_5_0057584 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP Digital Archive |
subjects | Condensed Matter Diffusivity Electroosmosis Fluid dynamics Mathematical analysis Microfluidics Physics Statistical Mechanics Tensors Tracer particles Walls |
title | Generalized Taylor dispersion for translationally invariant microfluidic systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T02%3A00%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20Taylor%20dispersion%20for%20translationally%20invariant%20microfluidic%20systems&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Alexandre,%20A.&rft.date=2021-08-01&rft.volume=33&rft.issue=8&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0057584&rft_dat=%3Cproquest_cross%3E2558836773%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-9f1af68c9e7ebb694588acdead52c6f1281dcacde174d3274a5dc7360104a30d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2558836773&rft_id=info:pmid/&rfr_iscdi=true |