Loading…
High-order geometric integrators for representation-free Ehrenfest dynamics
Ehrenfest dynamics is a useful approximation for ab initio mixed quantum-classical molecular dynamics that can treat electronically nonadiabatic effects. Although a severe approximation to the exact solution of the molecular time-dependent Schrödinger equation, Ehrenfest dynamics is symplectic, is t...
Saved in:
Published in: | The Journal of chemical physics 2021-09, Vol.155 (12), p.124104-124104 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c360t-fa191d09b83b2fd7347ccc4690384e879daf4f661af1c2e6546cf5ff6e3a19c73 |
---|---|
cites | cdi_FETCH-LOGICAL-c360t-fa191d09b83b2fd7347ccc4690384e879daf4f661af1c2e6546cf5ff6e3a19c73 |
container_end_page | 124104 |
container_issue | 12 |
container_start_page | 124104 |
container_title | The Journal of chemical physics |
container_volume | 155 |
creator | Choi, Seonghoon Vaníček, Jiří |
description | Ehrenfest dynamics is a useful approximation for ab initio mixed quantum-classical molecular dynamics that can treat electronically nonadiabatic effects. Although a severe approximation to the exact solution of the molecular time-dependent Schrödinger equation, Ehrenfest dynamics is symplectic, is time-reversible, and conserves exactly the total molecular energy as well as the norm of the electronic wavefunction. Here, we surpass apparent complications due to the coupling of classical nuclear and quantum electronic motions and present efficient geometric integrators for “representation-free” Ehrenfest dynamics, which do not rely on a diabatic or adiabatic representation of electronic states and are of arbitrary even orders of accuracy in the time step. These numerical integrators, obtained by symmetrically composing the second-order splitting method and exactly solving the kinetic and potential propagation steps, are norm-conserving, symplectic, and time-reversible regardless of the time step used. Using a nonadiabatic simulation in the region of a conical intersection as an example, we demonstrate that these integrators preserve the geometric properties exactly and, if highly accurate solutions are desired, can be even more efficient than the most popular non-geometric integrators. |
doi_str_mv | 10.1063/5.0061878 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0061878</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2578774942</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-fa191d09b83b2fd7347ccc4690384e879daf4f661af1c2e6546cf5ff6e3a19c73</originalsourceid><addsrcrecordid>eNqd0M1KAzEUBeAgCtbqwjcYcKPC1GSSSSZLKfUHC250HdLMTZvSmdSbqdC3d8oUBJeu7ua7h8Mh5JrRCaOSP5QTSiWrVHVCRoxWOldS01MyorRguZZUnpOLlNaUUqYKMSJvL2G5yiPWgNkSYgMdBpeFtoMl2i5iynzEDGGLkKDtbBdim3sEyGYrhNZD6rJ639omuHRJzrzdJLg63jH5fJp9TF_y-fvz6_RxnjsuaZd7yzSrqV5UfFH4WnGhnHOi78krAZXStfXCS8msZ64AWQrpfOm9BN5_OsXH5HbI3WL82vUNTBOSg83GthB3yRSlqpQSWhQ9vflD13GHbd_uoErJSi10r-4G5TCmhODNFkNjcW8YNYdZTWmOs_b2frDJhWGO_-HviL_QbGvPfwC5LoZG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2575615949</pqid></control><display><type>article</type><title>High-order geometric integrators for representation-free Ehrenfest dynamics</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP - American Institute of Physics</source><creator>Choi, Seonghoon ; Vaníček, Jiří</creator><creatorcontrib>Choi, Seonghoon ; Vaníček, Jiří</creatorcontrib><description>Ehrenfest dynamics is a useful approximation for ab initio mixed quantum-classical molecular dynamics that can treat electronically nonadiabatic effects. Although a severe approximation to the exact solution of the molecular time-dependent Schrödinger equation, Ehrenfest dynamics is symplectic, is time-reversible, and conserves exactly the total molecular energy as well as the norm of the electronic wavefunction. Here, we surpass apparent complications due to the coupling of classical nuclear and quantum electronic motions and present efficient geometric integrators for “representation-free” Ehrenfest dynamics, which do not rely on a diabatic or adiabatic representation of electronic states and are of arbitrary even orders of accuracy in the time step. These numerical integrators, obtained by symmetrically composing the second-order splitting method and exactly solving the kinetic and potential propagation steps, are norm-conserving, symplectic, and time-reversible regardless of the time step used. Using a nonadiabatic simulation in the region of a conical intersection as an example, we demonstrate that these integrators preserve the geometric properties exactly and, if highly accurate solutions are desired, can be even more efficient than the most popular non-geometric integrators.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0061878</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Approximation ; Coupling (molecular) ; Electron states ; Exact solutions ; Integrators ; Molecular dynamics ; Representations ; Schrodinger equation ; Time dependence ; Wave functions</subject><ispartof>The Journal of chemical physics, 2021-09, Vol.155 (12), p.124104-124104</ispartof><rights>Author(s)</rights><rights>2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-fa191d09b83b2fd7347ccc4690384e879daf4f661af1c2e6546cf5ff6e3a19c73</citedby><cites>FETCH-LOGICAL-c360t-fa191d09b83b2fd7347ccc4690384e879daf4f661af1c2e6546cf5ff6e3a19c73</cites><orcidid>0000-0002-2080-4378 ; 0000-0002-1904-0059</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0061878$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>314,780,782,784,795,27924,27925,76255</link.rule.ids></links><search><creatorcontrib>Choi, Seonghoon</creatorcontrib><creatorcontrib>Vaníček, Jiří</creatorcontrib><title>High-order geometric integrators for representation-free Ehrenfest dynamics</title><title>The Journal of chemical physics</title><description>Ehrenfest dynamics is a useful approximation for ab initio mixed quantum-classical molecular dynamics that can treat electronically nonadiabatic effects. Although a severe approximation to the exact solution of the molecular time-dependent Schrödinger equation, Ehrenfest dynamics is symplectic, is time-reversible, and conserves exactly the total molecular energy as well as the norm of the electronic wavefunction. Here, we surpass apparent complications due to the coupling of classical nuclear and quantum electronic motions and present efficient geometric integrators for “representation-free” Ehrenfest dynamics, which do not rely on a diabatic or adiabatic representation of electronic states and are of arbitrary even orders of accuracy in the time step. These numerical integrators, obtained by symmetrically composing the second-order splitting method and exactly solving the kinetic and potential propagation steps, are norm-conserving, symplectic, and time-reversible regardless of the time step used. Using a nonadiabatic simulation in the region of a conical intersection as an example, we demonstrate that these integrators preserve the geometric properties exactly and, if highly accurate solutions are desired, can be even more efficient than the most popular non-geometric integrators.</description><subject>Approximation</subject><subject>Coupling (molecular)</subject><subject>Electron states</subject><subject>Exact solutions</subject><subject>Integrators</subject><subject>Molecular dynamics</subject><subject>Representations</subject><subject>Schrodinger equation</subject><subject>Time dependence</subject><subject>Wave functions</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AJDQP</sourceid><recordid>eNqd0M1KAzEUBeAgCtbqwjcYcKPC1GSSSSZLKfUHC250HdLMTZvSmdSbqdC3d8oUBJeu7ua7h8Mh5JrRCaOSP5QTSiWrVHVCRoxWOldS01MyorRguZZUnpOLlNaUUqYKMSJvL2G5yiPWgNkSYgMdBpeFtoMl2i5iynzEDGGLkKDtbBdim3sEyGYrhNZD6rJ639omuHRJzrzdJLg63jH5fJp9TF_y-fvz6_RxnjsuaZd7yzSrqV5UfFH4WnGhnHOi78krAZXStfXCS8msZ64AWQrpfOm9BN5_OsXH5HbI3WL82vUNTBOSg83GthB3yRSlqpQSWhQ9vflD13GHbd_uoErJSi10r-4G5TCmhODNFkNjcW8YNYdZTWmOs_b2frDJhWGO_-HviL_QbGvPfwC5LoZG</recordid><startdate>20210928</startdate><enddate>20210928</enddate><creator>Choi, Seonghoon</creator><creator>Vaníček, Jiří</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2080-4378</orcidid><orcidid>https://orcid.org/0000-0002-1904-0059</orcidid></search><sort><creationdate>20210928</creationdate><title>High-order geometric integrators for representation-free Ehrenfest dynamics</title><author>Choi, Seonghoon ; Vaníček, Jiří</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-fa191d09b83b2fd7347ccc4690384e879daf4f661af1c2e6546cf5ff6e3a19c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Approximation</topic><topic>Coupling (molecular)</topic><topic>Electron states</topic><topic>Exact solutions</topic><topic>Integrators</topic><topic>Molecular dynamics</topic><topic>Representations</topic><topic>Schrodinger equation</topic><topic>Time dependence</topic><topic>Wave functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Seonghoon</creatorcontrib><creatorcontrib>Vaníček, Jiří</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Seonghoon</au><au>Vaníček, Jiří</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-order geometric integrators for representation-free Ehrenfest dynamics</atitle><jtitle>The Journal of chemical physics</jtitle><date>2021-09-28</date><risdate>2021</risdate><volume>155</volume><issue>12</issue><spage>124104</spage><epage>124104</epage><pages>124104-124104</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Ehrenfest dynamics is a useful approximation for ab initio mixed quantum-classical molecular dynamics that can treat electronically nonadiabatic effects. Although a severe approximation to the exact solution of the molecular time-dependent Schrödinger equation, Ehrenfest dynamics is symplectic, is time-reversible, and conserves exactly the total molecular energy as well as the norm of the electronic wavefunction. Here, we surpass apparent complications due to the coupling of classical nuclear and quantum electronic motions and present efficient geometric integrators for “representation-free” Ehrenfest dynamics, which do not rely on a diabatic or adiabatic representation of electronic states and are of arbitrary even orders of accuracy in the time step. These numerical integrators, obtained by symmetrically composing the second-order splitting method and exactly solving the kinetic and potential propagation steps, are norm-conserving, symplectic, and time-reversible regardless of the time step used. Using a nonadiabatic simulation in the region of a conical intersection as an example, we demonstrate that these integrators preserve the geometric properties exactly and, if highly accurate solutions are desired, can be even more efficient than the most popular non-geometric integrators.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0061878</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2080-4378</orcidid><orcidid>https://orcid.org/0000-0002-1904-0059</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2021-09, Vol.155 (12), p.124104-124104 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_crossref_primary_10_1063_5_0061878 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP - American Institute of Physics |
subjects | Approximation Coupling (molecular) Electron states Exact solutions Integrators Molecular dynamics Representations Schrodinger equation Time dependence Wave functions |
title | High-order geometric integrators for representation-free Ehrenfest dynamics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A26%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-order%20geometric%20integrators%20for%20representation-free%20Ehrenfest%20dynamics&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Choi,%20Seonghoon&rft.date=2021-09-28&rft.volume=155&rft.issue=12&rft.spage=124104&rft.epage=124104&rft.pages=124104-124104&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0061878&rft_dat=%3Cproquest_cross%3E2578774942%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c360t-fa191d09b83b2fd7347ccc4690384e879daf4f661af1c2e6546cf5ff6e3a19c73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2575615949&rft_id=info:pmid/&rfr_iscdi=true |