Loading…

High-order geometric integrators for representation-free Ehrenfest dynamics

Ehrenfest dynamics is a useful approximation for ab initio mixed quantum-classical molecular dynamics that can treat electronically nonadiabatic effects. Although a severe approximation to the exact solution of the molecular time-dependent Schrödinger equation, Ehrenfest dynamics is symplectic, is t...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2021-09, Vol.155 (12), p.124104-124104
Main Authors: Choi, Seonghoon, Vaníček, Jiří
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c360t-fa191d09b83b2fd7347ccc4690384e879daf4f661af1c2e6546cf5ff6e3a19c73
cites cdi_FETCH-LOGICAL-c360t-fa191d09b83b2fd7347ccc4690384e879daf4f661af1c2e6546cf5ff6e3a19c73
container_end_page 124104
container_issue 12
container_start_page 124104
container_title The Journal of chemical physics
container_volume 155
creator Choi, Seonghoon
Vaníček, Jiří
description Ehrenfest dynamics is a useful approximation for ab initio mixed quantum-classical molecular dynamics that can treat electronically nonadiabatic effects. Although a severe approximation to the exact solution of the molecular time-dependent Schrödinger equation, Ehrenfest dynamics is symplectic, is time-reversible, and conserves exactly the total molecular energy as well as the norm of the electronic wavefunction. Here, we surpass apparent complications due to the coupling of classical nuclear and quantum electronic motions and present efficient geometric integrators for “representation-free” Ehrenfest dynamics, which do not rely on a diabatic or adiabatic representation of electronic states and are of arbitrary even orders of accuracy in the time step. These numerical integrators, obtained by symmetrically composing the second-order splitting method and exactly solving the kinetic and potential propagation steps, are norm-conserving, symplectic, and time-reversible regardless of the time step used. Using a nonadiabatic simulation in the region of a conical intersection as an example, we demonstrate that these integrators preserve the geometric properties exactly and, if highly accurate solutions are desired, can be even more efficient than the most popular non-geometric integrators.
doi_str_mv 10.1063/5.0061878
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0061878</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2578774942</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-fa191d09b83b2fd7347ccc4690384e879daf4f661af1c2e6546cf5ff6e3a19c73</originalsourceid><addsrcrecordid>eNqd0M1KAzEUBeAgCtbqwjcYcKPC1GSSSSZLKfUHC250HdLMTZvSmdSbqdC3d8oUBJeu7ua7h8Mh5JrRCaOSP5QTSiWrVHVCRoxWOldS01MyorRguZZUnpOLlNaUUqYKMSJvL2G5yiPWgNkSYgMdBpeFtoMl2i5iynzEDGGLkKDtbBdim3sEyGYrhNZD6rJ639omuHRJzrzdJLg63jH5fJp9TF_y-fvz6_RxnjsuaZd7yzSrqV5UfFH4WnGhnHOi78krAZXStfXCS8msZ64AWQrpfOm9BN5_OsXH5HbI3WL82vUNTBOSg83GthB3yRSlqpQSWhQ9vflD13GHbd_uoErJSi10r-4G5TCmhODNFkNjcW8YNYdZTWmOs_b2frDJhWGO_-HviL_QbGvPfwC5LoZG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2575615949</pqid></control><display><type>article</type><title>High-order geometric integrators for representation-free Ehrenfest dynamics</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP - American Institute of Physics</source><creator>Choi, Seonghoon ; Vaníček, Jiří</creator><creatorcontrib>Choi, Seonghoon ; Vaníček, Jiří</creatorcontrib><description>Ehrenfest dynamics is a useful approximation for ab initio mixed quantum-classical molecular dynamics that can treat electronically nonadiabatic effects. Although a severe approximation to the exact solution of the molecular time-dependent Schrödinger equation, Ehrenfest dynamics is symplectic, is time-reversible, and conserves exactly the total molecular energy as well as the norm of the electronic wavefunction. Here, we surpass apparent complications due to the coupling of classical nuclear and quantum electronic motions and present efficient geometric integrators for “representation-free” Ehrenfest dynamics, which do not rely on a diabatic or adiabatic representation of electronic states and are of arbitrary even orders of accuracy in the time step. These numerical integrators, obtained by symmetrically composing the second-order splitting method and exactly solving the kinetic and potential propagation steps, are norm-conserving, symplectic, and time-reversible regardless of the time step used. Using a nonadiabatic simulation in the region of a conical intersection as an example, we demonstrate that these integrators preserve the geometric properties exactly and, if highly accurate solutions are desired, can be even more efficient than the most popular non-geometric integrators.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0061878</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Approximation ; Coupling (molecular) ; Electron states ; Exact solutions ; Integrators ; Molecular dynamics ; Representations ; Schrodinger equation ; Time dependence ; Wave functions</subject><ispartof>The Journal of chemical physics, 2021-09, Vol.155 (12), p.124104-124104</ispartof><rights>Author(s)</rights><rights>2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-fa191d09b83b2fd7347ccc4690384e879daf4f661af1c2e6546cf5ff6e3a19c73</citedby><cites>FETCH-LOGICAL-c360t-fa191d09b83b2fd7347ccc4690384e879daf4f661af1c2e6546cf5ff6e3a19c73</cites><orcidid>0000-0002-2080-4378 ; 0000-0002-1904-0059</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0061878$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>314,780,782,784,795,27924,27925,76255</link.rule.ids></links><search><creatorcontrib>Choi, Seonghoon</creatorcontrib><creatorcontrib>Vaníček, Jiří</creatorcontrib><title>High-order geometric integrators for representation-free Ehrenfest dynamics</title><title>The Journal of chemical physics</title><description>Ehrenfest dynamics is a useful approximation for ab initio mixed quantum-classical molecular dynamics that can treat electronically nonadiabatic effects. Although a severe approximation to the exact solution of the molecular time-dependent Schrödinger equation, Ehrenfest dynamics is symplectic, is time-reversible, and conserves exactly the total molecular energy as well as the norm of the electronic wavefunction. Here, we surpass apparent complications due to the coupling of classical nuclear and quantum electronic motions and present efficient geometric integrators for “representation-free” Ehrenfest dynamics, which do not rely on a diabatic or adiabatic representation of electronic states and are of arbitrary even orders of accuracy in the time step. These numerical integrators, obtained by symmetrically composing the second-order splitting method and exactly solving the kinetic and potential propagation steps, are norm-conserving, symplectic, and time-reversible regardless of the time step used. Using a nonadiabatic simulation in the region of a conical intersection as an example, we demonstrate that these integrators preserve the geometric properties exactly and, if highly accurate solutions are desired, can be even more efficient than the most popular non-geometric integrators.</description><subject>Approximation</subject><subject>Coupling (molecular)</subject><subject>Electron states</subject><subject>Exact solutions</subject><subject>Integrators</subject><subject>Molecular dynamics</subject><subject>Representations</subject><subject>Schrodinger equation</subject><subject>Time dependence</subject><subject>Wave functions</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AJDQP</sourceid><recordid>eNqd0M1KAzEUBeAgCtbqwjcYcKPC1GSSSSZLKfUHC250HdLMTZvSmdSbqdC3d8oUBJeu7ua7h8Mh5JrRCaOSP5QTSiWrVHVCRoxWOldS01MyorRguZZUnpOLlNaUUqYKMSJvL2G5yiPWgNkSYgMdBpeFtoMl2i5iynzEDGGLkKDtbBdim3sEyGYrhNZD6rJ639omuHRJzrzdJLg63jH5fJp9TF_y-fvz6_RxnjsuaZd7yzSrqV5UfFH4WnGhnHOi78krAZXStfXCS8msZ64AWQrpfOm9BN5_OsXH5HbI3WL82vUNTBOSg83GthB3yRSlqpQSWhQ9vflD13GHbd_uoErJSi10r-4G5TCmhODNFkNjcW8YNYdZTWmOs_b2frDJhWGO_-HviL_QbGvPfwC5LoZG</recordid><startdate>20210928</startdate><enddate>20210928</enddate><creator>Choi, Seonghoon</creator><creator>Vaníček, Jiří</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2080-4378</orcidid><orcidid>https://orcid.org/0000-0002-1904-0059</orcidid></search><sort><creationdate>20210928</creationdate><title>High-order geometric integrators for representation-free Ehrenfest dynamics</title><author>Choi, Seonghoon ; Vaníček, Jiří</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-fa191d09b83b2fd7347ccc4690384e879daf4f661af1c2e6546cf5ff6e3a19c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Approximation</topic><topic>Coupling (molecular)</topic><topic>Electron states</topic><topic>Exact solutions</topic><topic>Integrators</topic><topic>Molecular dynamics</topic><topic>Representations</topic><topic>Schrodinger equation</topic><topic>Time dependence</topic><topic>Wave functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Seonghoon</creatorcontrib><creatorcontrib>Vaníček, Jiří</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Seonghoon</au><au>Vaníček, Jiří</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-order geometric integrators for representation-free Ehrenfest dynamics</atitle><jtitle>The Journal of chemical physics</jtitle><date>2021-09-28</date><risdate>2021</risdate><volume>155</volume><issue>12</issue><spage>124104</spage><epage>124104</epage><pages>124104-124104</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Ehrenfest dynamics is a useful approximation for ab initio mixed quantum-classical molecular dynamics that can treat electronically nonadiabatic effects. Although a severe approximation to the exact solution of the molecular time-dependent Schrödinger equation, Ehrenfest dynamics is symplectic, is time-reversible, and conserves exactly the total molecular energy as well as the norm of the electronic wavefunction. Here, we surpass apparent complications due to the coupling of classical nuclear and quantum electronic motions and present efficient geometric integrators for “representation-free” Ehrenfest dynamics, which do not rely on a diabatic or adiabatic representation of electronic states and are of arbitrary even orders of accuracy in the time step. These numerical integrators, obtained by symmetrically composing the second-order splitting method and exactly solving the kinetic and potential propagation steps, are norm-conserving, symplectic, and time-reversible regardless of the time step used. Using a nonadiabatic simulation in the region of a conical intersection as an example, we demonstrate that these integrators preserve the geometric properties exactly and, if highly accurate solutions are desired, can be even more efficient than the most popular non-geometric integrators.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0061878</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2080-4378</orcidid><orcidid>https://orcid.org/0000-0002-1904-0059</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2021-09, Vol.155 (12), p.124104-124104
issn 0021-9606
1089-7690
language eng
recordid cdi_crossref_primary_10_1063_5_0061878
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP - American Institute of Physics
subjects Approximation
Coupling (molecular)
Electron states
Exact solutions
Integrators
Molecular dynamics
Representations
Schrodinger equation
Time dependence
Wave functions
title High-order geometric integrators for representation-free Ehrenfest dynamics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A26%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-order%20geometric%20integrators%20for%20representation-free%20Ehrenfest%20dynamics&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Choi,%20Seonghoon&rft.date=2021-09-28&rft.volume=155&rft.issue=12&rft.spage=124104&rft.epage=124104&rft.pages=124104-124104&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0061878&rft_dat=%3Cproquest_cross%3E2578774942%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c360t-fa191d09b83b2fd7347ccc4690384e879daf4f661af1c2e6546cf5ff6e3a19c73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2575615949&rft_id=info:pmid/&rfr_iscdi=true