Loading…

Time-irreversibility test for random-length time series: The matching-time approach applied to DNA

In this work, we implement the so-called matching-time estimators for estimating the entropy rate as well as the entropy production rate for symbolic sequences. These estimators are based on recurrence properties of the system, which have been shown to be appropriate for testing irreversibility, esp...

Full description

Saved in:
Bibliographic Details
Published in:Chaos (Woodbury, N.Y.) N.Y.), 2021-12, Vol.31 (12), p.123126-123126
Main Author: Salgado-García, R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c383t-4d2cb6c849c4b266a3edb48011eaa07bb1f5b1d71085e71002f979e20f09d6173
cites cdi_FETCH-LOGICAL-c383t-4d2cb6c849c4b266a3edb48011eaa07bb1f5b1d71085e71002f979e20f09d6173
container_end_page 123126
container_issue 12
container_start_page 123126
container_title Chaos (Woodbury, N.Y.)
container_volume 31
creator Salgado-García, R.
description In this work, we implement the so-called matching-time estimators for estimating the entropy rate as well as the entropy production rate for symbolic sequences. These estimators are based on recurrence properties of the system, which have been shown to be appropriate for testing irreversibility, especially when the sequences have large correlations or memory. Based on limit theorems for matching times, we derive a maximum likelihood estimator for the entropy rate by assuming that we have a set of moderately short symbolic time series of finite random duration. We show that the proposed estimator has several properties that make it adequate for estimating the entropy rate and entropy production rate (or for testing the irreversibility) when the sample sequences have different lengths, such as the coding sequences of DNA. We test our approach with controlled examples of Markov chains, non-linear chaotic maps, and linear and non-linear autoregressive processes. We also implement our estimators for genomic sequences to show that the degree of irreversibility of coding sequences in human DNA is significantly larger than that for the corresponding non-coding sequences.
doi_str_mv 10.1063/5.0062805
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0062805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2611793752</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-4d2cb6c849c4b266a3edb48011eaa07bb1f5b1d71085e71002f979e20f09d6173</originalsourceid><addsrcrecordid>eNp90M1qGzEQAGAREmo37SEvEAS5pIF1R9Jqf3ILaZsUTHtxz4uknY1ldleOJAfy9pVj14UEchkNzMdoZgg5YzBjUIivcgZQ8ArkEZkyqOqsLCp-vM1lnjEJMCEfQ1gBAONCfiATkdclF4JNiV7YATPrPT6hD1bb3sZnGjFE2jlPvRpbN2Q9jg9xSWOyNKC3GK7pYol0UNEs7fiQvVTUeu2dMstt0ltsaXT026-bT-SkU33Az_v3lPz58X1xe5_Nf9_9vL2ZZ0ZUImZ5y40uTJXXJte8KJTAVucVMIZKQak166RmbZkWlJgi8K4ua-TQQd0WrBSn5HLXN03xuEkbNIMNBvtejeg2oeEFkzVPkSV68Yqu3MaPabqtYmUtSsmT-rJTxrsQPHbN2ttB-eeGQbM9fCOb_eGTPd933OgB24P8d-kErnYgGBtVtG48mCfn_3dq1m33Hn779V9TcZg2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2611793752</pqid></control><display><type>article</type><title>Time-irreversibility test for random-length time series: The matching-time approach applied to DNA</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Salgado-García, R.</creator><creatorcontrib>Salgado-García, R.</creatorcontrib><description>In this work, we implement the so-called matching-time estimators for estimating the entropy rate as well as the entropy production rate for symbolic sequences. These estimators are based on recurrence properties of the system, which have been shown to be appropriate for testing irreversibility, especially when the sequences have large correlations or memory. Based on limit theorems for matching times, we derive a maximum likelihood estimator for the entropy rate by assuming that we have a set of moderately short symbolic time series of finite random duration. We show that the proposed estimator has several properties that make it adequate for estimating the entropy rate and entropy production rate (or for testing the irreversibility) when the sample sequences have different lengths, such as the coding sequences of DNA. We test our approach with controlled examples of Markov chains, non-linear chaotic maps, and linear and non-linear autoregressive processes. We also implement our estimators for genomic sequences to show that the degree of irreversibility of coding sequences in human DNA is significantly larger than that for the corresponding non-coding sequences.</description><identifier>ISSN: 1054-1500</identifier><identifier>EISSN: 1089-7682</identifier><identifier>DOI: 10.1063/5.0062805</identifier><identifier>PMID: 34972331</identifier><identifier>CODEN: CHAOEH</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Autoregressive processes ; DNA - genetics ; Entropy ; Gene sequencing ; Genome ; Humans ; Markov Chains ; Matching ; Maximum likelihood estimators ; Time Factors ; Time series</subject><ispartof>Chaos (Woodbury, N.Y.), 2021-12, Vol.31 (12), p.123126-123126</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-4d2cb6c849c4b266a3edb48011eaa07bb1f5b1d71085e71002f979e20f09d6173</citedby><cites>FETCH-LOGICAL-c383t-4d2cb6c849c4b266a3edb48011eaa07bb1f5b1d71085e71002f979e20f09d6173</cites><orcidid>0000-0003-3150-065X ; 000000033150065X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34972331$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Salgado-García, R.</creatorcontrib><title>Time-irreversibility test for random-length time series: The matching-time approach applied to DNA</title><title>Chaos (Woodbury, N.Y.)</title><addtitle>Chaos</addtitle><description>In this work, we implement the so-called matching-time estimators for estimating the entropy rate as well as the entropy production rate for symbolic sequences. These estimators are based on recurrence properties of the system, which have been shown to be appropriate for testing irreversibility, especially when the sequences have large correlations or memory. Based on limit theorems for matching times, we derive a maximum likelihood estimator for the entropy rate by assuming that we have a set of moderately short symbolic time series of finite random duration. We show that the proposed estimator has several properties that make it adequate for estimating the entropy rate and entropy production rate (or for testing the irreversibility) when the sample sequences have different lengths, such as the coding sequences of DNA. We test our approach with controlled examples of Markov chains, non-linear chaotic maps, and linear and non-linear autoregressive processes. We also implement our estimators for genomic sequences to show that the degree of irreversibility of coding sequences in human DNA is significantly larger than that for the corresponding non-coding sequences.</description><subject>Autoregressive processes</subject><subject>DNA - genetics</subject><subject>Entropy</subject><subject>Gene sequencing</subject><subject>Genome</subject><subject>Humans</subject><subject>Markov Chains</subject><subject>Matching</subject><subject>Maximum likelihood estimators</subject><subject>Time Factors</subject><subject>Time series</subject><issn>1054-1500</issn><issn>1089-7682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp90M1qGzEQAGAREmo37SEvEAS5pIF1R9Jqf3ILaZsUTHtxz4uknY1ldleOJAfy9pVj14UEchkNzMdoZgg5YzBjUIivcgZQ8ArkEZkyqOqsLCp-vM1lnjEJMCEfQ1gBAONCfiATkdclF4JNiV7YATPrPT6hD1bb3sZnGjFE2jlPvRpbN2Q9jg9xSWOyNKC3GK7pYol0UNEs7fiQvVTUeu2dMstt0ltsaXT026-bT-SkU33Az_v3lPz58X1xe5_Nf9_9vL2ZZ0ZUImZ5y40uTJXXJte8KJTAVucVMIZKQak166RmbZkWlJgi8K4ua-TQQd0WrBSn5HLXN03xuEkbNIMNBvtejeg2oeEFkzVPkSV68Yqu3MaPabqtYmUtSsmT-rJTxrsQPHbN2ttB-eeGQbM9fCOb_eGTPd933OgB24P8d-kErnYgGBtVtG48mCfn_3dq1m33Hn779V9TcZg2</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Salgado-García, R.</creator><general>American Institute of Physics</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3150-065X</orcidid><orcidid>https://orcid.org/000000033150065X</orcidid></search><sort><creationdate>202112</creationdate><title>Time-irreversibility test for random-length time series: The matching-time approach applied to DNA</title><author>Salgado-García, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-4d2cb6c849c4b266a3edb48011eaa07bb1f5b1d71085e71002f979e20f09d6173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Autoregressive processes</topic><topic>DNA - genetics</topic><topic>Entropy</topic><topic>Gene sequencing</topic><topic>Genome</topic><topic>Humans</topic><topic>Markov Chains</topic><topic>Matching</topic><topic>Maximum likelihood estimators</topic><topic>Time Factors</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salgado-García, R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Chaos (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salgado-García, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time-irreversibility test for random-length time series: The matching-time approach applied to DNA</atitle><jtitle>Chaos (Woodbury, N.Y.)</jtitle><addtitle>Chaos</addtitle><date>2021-12</date><risdate>2021</risdate><volume>31</volume><issue>12</issue><spage>123126</spage><epage>123126</epage><pages>123126-123126</pages><issn>1054-1500</issn><eissn>1089-7682</eissn><coden>CHAOEH</coden><abstract>In this work, we implement the so-called matching-time estimators for estimating the entropy rate as well as the entropy production rate for symbolic sequences. These estimators are based on recurrence properties of the system, which have been shown to be appropriate for testing irreversibility, especially when the sequences have large correlations or memory. Based on limit theorems for matching times, we derive a maximum likelihood estimator for the entropy rate by assuming that we have a set of moderately short symbolic time series of finite random duration. We show that the proposed estimator has several properties that make it adequate for estimating the entropy rate and entropy production rate (or for testing the irreversibility) when the sample sequences have different lengths, such as the coding sequences of DNA. We test our approach with controlled examples of Markov chains, non-linear chaotic maps, and linear and non-linear autoregressive processes. We also implement our estimators for genomic sequences to show that the degree of irreversibility of coding sequences in human DNA is significantly larger than that for the corresponding non-coding sequences.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>34972331</pmid><doi>10.1063/5.0062805</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-3150-065X</orcidid><orcidid>https://orcid.org/000000033150065X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1054-1500
ispartof Chaos (Woodbury, N.Y.), 2021-12, Vol.31 (12), p.123126-123126
issn 1054-1500
1089-7682
language eng
recordid cdi_crossref_primary_10_1063_5_0062805
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Autoregressive processes
DNA - genetics
Entropy
Gene sequencing
Genome
Humans
Markov Chains
Matching
Maximum likelihood estimators
Time Factors
Time series
title Time-irreversibility test for random-length time series: The matching-time approach applied to DNA
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A16%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time-irreversibility%20test%20for%20random-length%20time%20series:%20The%20matching-time%20approach%20applied%20to%20DNA&rft.jtitle=Chaos%20(Woodbury,%20N.Y.)&rft.au=Salgado-Garc%C3%ADa,%20R.&rft.date=2021-12&rft.volume=31&rft.issue=12&rft.spage=123126&rft.epage=123126&rft.pages=123126-123126&rft.issn=1054-1500&rft.eissn=1089-7682&rft.coden=CHAOEH&rft_id=info:doi/10.1063/5.0062805&rft_dat=%3Cproquest_cross%3E2611793752%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c383t-4d2cb6c849c4b266a3edb48011eaa07bb1f5b1d71085e71002f979e20f09d6173%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2611793752&rft_id=info:pmid/34972331&rfr_iscdi=true