Loading…

Multi-functional liquid crystal elastomer composites

Liquid crystal elastomers (LCEs), owing to their intrinsic anisotropic property and capability of generating programmable complex morphologies under heat, have been widely used for applications ranging from soft robotics, photonic devices, cell culture, to tissue engineering. To fulfill the applicat...

Full description

Saved in:
Bibliographic Details
Published in:Applied Physics Reviews 2022-03, Vol.9 (1)
Main Authors: Wang, Yuchen, Liu, Jiaqi, Yang, Shu
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Liquid crystal elastomers (LCEs), owing to their intrinsic anisotropic property and capability of generating programmable complex morphologies under heat, have been widely used for applications ranging from soft robotics, photonic devices, cell culture, to tissue engineering. To fulfill the applications under various circumstances, high actuation efficiency, high mechanical strength, large heat and electrical conductivity, or responses to multiple stimuli are required. Therefore, design and fabrication of LCE composites are a promising strategy to enhanced physical properties and offer additional stimuli responses to the LCEs such as light, electric, and magnetic fields. In this review, we focus on recent advances in LCE composites, where LCEs are defined as anisotropic elastomeric materials in a broader context. Classic LCE composites with metallic nanoparticles, magnetic particles, liquid metal, carbon nanotubes, graphene and its derivative, and carbon black, and LCE composites from cellulose nanocrystals within the polymer network where cellulose can provide the unique liquid crystal anisotropy will be discussed. We conclude with the challenges and future research opportunities.
ISSN:1931-9401
1931-9401
DOI:10.1063/5.0075471