Loading…
Multi-functional liquid crystal elastomer composites
Liquid crystal elastomers (LCEs), owing to their intrinsic anisotropic property and capability of generating programmable complex morphologies under heat, have been widely used for applications ranging from soft robotics, photonic devices, cell culture, to tissue engineering. To fulfill the applicat...
Saved in:
Published in: | Applied Physics Reviews 2022-03, Vol.9 (1) |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Liquid crystal elastomers (LCEs), owing to their intrinsic anisotropic property and capability of generating programmable complex morphologies under heat, have been widely used for applications ranging from soft robotics, photonic devices, cell culture, to tissue engineering. To fulfill the applications under various circumstances, high actuation efficiency, high mechanical strength, large heat and electrical conductivity, or responses to multiple stimuli are required. Therefore, design and fabrication of LCE composites are a promising strategy to enhanced physical properties and offer additional stimuli responses to the LCEs such as light, electric, and magnetic fields. In this review, we focus on recent advances in LCE composites, where LCEs are defined as anisotropic elastomeric materials in a broader context. Classic LCE composites with metallic nanoparticles, magnetic particles, liquid metal, carbon nanotubes, graphene and its derivative, and carbon black, and LCE composites from cellulose nanocrystals within the polymer network where cellulose can provide the unique liquid crystal anisotropy will be discussed. We conclude with the challenges and future research opportunities. |
---|---|
ISSN: | 1931-9401 1931-9401 |
DOI: | 10.1063/5.0075471 |