Loading…

Understanding random telegraph noise in two-dimensional BP/ReS2 heterointerface

Black phosphorus (BP)-based broken gap heterojunctions have attracted significant attention mainly owing to its wide thickness-dependent Fermi level, offering opportunities to demonstrate various carrier transport characteristics and high performing optoelectronic applications. However, the interfac...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2022-06, Vol.120 (25)
Main Authors: Lee, Byung Chul, Seo, Youkyung, Kim, Chulmin, Kim, Yeeun, Joo, Min-Kyu, Kim, Gyu-Tae
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Black phosphorus (BP)-based broken gap heterojunctions have attracted significant attention mainly owing to its wide thickness-dependent Fermi level, offering opportunities to demonstrate various carrier transport characteristics and high performing optoelectronic applications. However, the interfacial effects on the carrier scattering mechanism of the two-dimensional (2D) broken gap heterojunctions are unclear. Herein, we discuss the origin of random telegraph noise of multilayer BP/ReS2 heterojunction diode, in particular, at the direct tunneling (DT) conduction regime. The gate-tunable diode characteristic of BP/ReS2 heterojunction allows one to unveil systematically the transition of the charge fluctuation mechanism from drift-diffusion to the DT regime. Unlike individual BP and ReS2 devices, the current noise histogram obtained from the BP/ReS2 heterojunction device exhibits exclusively two dominant peaks at the DT regime. We ascribed this distinct low-frequency noise feature representing the presence of random telegraph signal to the BP/ReS2 interfacial traps by taking into account of the inherent direct tunneling current conduction mechanism. In addition, the electrostatic bias-dependent power spectrum density manifests clearly that the dominant scattering mechanism is the carrier number fluctuation rather than tunneling barrier height fluctuation at the BP/ReS2 heterointerface. This study elucidates the carrier transport and the charge fluctuation mechanism at the 2D heterostructure interface.
ISSN:0003-6951
1077-3118
DOI:10.1063/5.0093688