Loading…
Spin wave computing using pre-recorded magnetization patterns
We propose a novel type of spin wave computing device, based on a bilayer structure that includes a “bias layer” made from a hard magnetic material and a “propagation layer” made from a magnetic material with low damping, for example, yttrium garnet or permalloy. The bias layer maintains a stable pr...
Saved in:
Published in: | Journal of applied physics 2022-10, Vol.132 (15) |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c327t-ced175b77ff76d890cac89f7280acaf10d586cfd030e9dc314a2c8a887b3ca533 |
---|---|
cites | cdi_FETCH-LOGICAL-c327t-ced175b77ff76d890cac89f7280acaf10d586cfd030e9dc314a2c8a887b3ca533 |
container_end_page | |
container_issue | 15 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 132 |
creator | Rivkin, Kirill Montemorra, Michael |
description | We propose a novel type of spin wave computing device, based on a bilayer structure that includes a “bias layer” made from a hard magnetic material and a “propagation layer” made from a magnetic material with low damping, for example, yttrium garnet or permalloy. The bias layer maintains a stable pre-recorded magnetization pattern, which generates a bias field with a desired spatial dependence, which in turn sets the equilibrium magnetization inside the propagation layer. When an external source applies an RF field to the propagation layer, excited spin waves scatter on the magnetization's inhomogeneities resulting in complex interference behavior. This scattering interference can be utilized to perform a variety of mathematical operations including Vector-Matrix multiplication. The spatial dependence of such magnetization patterns can be estimated via perturbation theory. |
doi_str_mv | 10.1063/5.0096192 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0096192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2727059500</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-ced175b77ff76d890cac89f7280acaf10d586cfd030e9dc314a2c8a887b3ca533</originalsourceid><addsrcrecordid>eNp90E1LAzEQBuAgCtbqwX-w4Elh6yQxm-TgQUr9gIIH9RzSfJQtdhOTbEV_va0tehC8zFwe3mFehE4xjDA09JKNAGSDJdlDAwxC1pwx2EcDAIJrIbk8REc5LwAwFlQO0PVTbLvqXa9cZcIy9qXt5lWfNzMmVydnQrLOVks971xpP3VpQ1dFXYpLXT5GB16_Zney20P0cjt5Ht_X08e7h_HNtDaU8FIbZzFnM869540VEow2QnpOBGijPQbLRGO8BQpOWkPxlSZGaCH4jBrNKB2is21uTOGtd7moRehTtz6pCCccmGQAa3W-VSaFnJPzKqZ2qdOHwqA27Simdu2s7cXWZtOW76d-8CqkX6ii9f_hv8lfuehzZg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2727059500</pqid></control><display><type>article</type><title>Spin wave computing using pre-recorded magnetization patterns</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Rivkin, Kirill ; Montemorra, Michael</creator><creatorcontrib>Rivkin, Kirill ; Montemorra, Michael</creatorcontrib><description>We propose a novel type of spin wave computing device, based on a bilayer structure that includes a “bias layer” made from a hard magnetic material and a “propagation layer” made from a magnetic material with low damping, for example, yttrium garnet or permalloy. The bias layer maintains a stable pre-recorded magnetization pattern, which generates a bias field with a desired spatial dependence, which in turn sets the equilibrium magnetization inside the propagation layer. When an external source applies an RF field to the propagation layer, excited spin waves scatter on the magnetization's inhomogeneities resulting in complex interference behavior. This scattering interference can be utilized to perform a variety of mathematical operations including Vector-Matrix multiplication. The spatial dependence of such magnetization patterns can be estimated via perturbation theory.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0096192</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Bias ; Computation ; Damping ; Ferrous alloys ; Interference ; Magnetic alloys ; Magnetic materials ; Magnetization ; Magnons ; Mathematical analysis ; Perturbation theory ; Scatter propagation ; Wave propagation ; Yttrium</subject><ispartof>Journal of applied physics, 2022-10, Vol.132 (15)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-ced175b77ff76d890cac89f7280acaf10d586cfd030e9dc314a2c8a887b3ca533</citedby><cites>FETCH-LOGICAL-c327t-ced175b77ff76d890cac89f7280acaf10d586cfd030e9dc314a2c8a887b3ca533</cites><orcidid>0000-0001-7859-9007</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Rivkin, Kirill</creatorcontrib><creatorcontrib>Montemorra, Michael</creatorcontrib><title>Spin wave computing using pre-recorded magnetization patterns</title><title>Journal of applied physics</title><description>We propose a novel type of spin wave computing device, based on a bilayer structure that includes a “bias layer” made from a hard magnetic material and a “propagation layer” made from a magnetic material with low damping, for example, yttrium garnet or permalloy. The bias layer maintains a stable pre-recorded magnetization pattern, which generates a bias field with a desired spatial dependence, which in turn sets the equilibrium magnetization inside the propagation layer. When an external source applies an RF field to the propagation layer, excited spin waves scatter on the magnetization's inhomogeneities resulting in complex interference behavior. This scattering interference can be utilized to perform a variety of mathematical operations including Vector-Matrix multiplication. The spatial dependence of such magnetization patterns can be estimated via perturbation theory.</description><subject>Applied physics</subject><subject>Bias</subject><subject>Computation</subject><subject>Damping</subject><subject>Ferrous alloys</subject><subject>Interference</subject><subject>Magnetic alloys</subject><subject>Magnetic materials</subject><subject>Magnetization</subject><subject>Magnons</subject><subject>Mathematical analysis</subject><subject>Perturbation theory</subject><subject>Scatter propagation</subject><subject>Wave propagation</subject><subject>Yttrium</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp90E1LAzEQBuAgCtbqwX-w4Elh6yQxm-TgQUr9gIIH9RzSfJQtdhOTbEV_va0tehC8zFwe3mFehE4xjDA09JKNAGSDJdlDAwxC1pwx2EcDAIJrIbk8REc5LwAwFlQO0PVTbLvqXa9cZcIy9qXt5lWfNzMmVydnQrLOVks971xpP3VpQ1dFXYpLXT5GB16_Zney20P0cjt5Ht_X08e7h_HNtDaU8FIbZzFnM869540VEow2QnpOBGijPQbLRGO8BQpOWkPxlSZGaCH4jBrNKB2is21uTOGtd7moRehTtz6pCCccmGQAa3W-VSaFnJPzKqZ2qdOHwqA27Simdu2s7cXWZtOW76d-8CqkX6ii9f_hv8lfuehzZg</recordid><startdate>20221021</startdate><enddate>20221021</enddate><creator>Rivkin, Kirill</creator><creator>Montemorra, Michael</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7859-9007</orcidid></search><sort><creationdate>20221021</creationdate><title>Spin wave computing using pre-recorded magnetization patterns</title><author>Rivkin, Kirill ; Montemorra, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-ced175b77ff76d890cac89f7280acaf10d586cfd030e9dc314a2c8a887b3ca533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applied physics</topic><topic>Bias</topic><topic>Computation</topic><topic>Damping</topic><topic>Ferrous alloys</topic><topic>Interference</topic><topic>Magnetic alloys</topic><topic>Magnetic materials</topic><topic>Magnetization</topic><topic>Magnons</topic><topic>Mathematical analysis</topic><topic>Perturbation theory</topic><topic>Scatter propagation</topic><topic>Wave propagation</topic><topic>Yttrium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rivkin, Kirill</creatorcontrib><creatorcontrib>Montemorra, Michael</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rivkin, Kirill</au><au>Montemorra, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spin wave computing using pre-recorded magnetization patterns</atitle><jtitle>Journal of applied physics</jtitle><date>2022-10-21</date><risdate>2022</risdate><volume>132</volume><issue>15</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>We propose a novel type of spin wave computing device, based on a bilayer structure that includes a “bias layer” made from a hard magnetic material and a “propagation layer” made from a magnetic material with low damping, for example, yttrium garnet or permalloy. The bias layer maintains a stable pre-recorded magnetization pattern, which generates a bias field with a desired spatial dependence, which in turn sets the equilibrium magnetization inside the propagation layer. When an external source applies an RF field to the propagation layer, excited spin waves scatter on the magnetization's inhomogeneities resulting in complex interference behavior. This scattering interference can be utilized to perform a variety of mathematical operations including Vector-Matrix multiplication. The spatial dependence of such magnetization patterns can be estimated via perturbation theory.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0096192</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7859-9007</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2022-10, Vol.132 (15) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_crossref_primary_10_1063_5_0096192 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Applied physics Bias Computation Damping Ferrous alloys Interference Magnetic alloys Magnetic materials Magnetization Magnons Mathematical analysis Perturbation theory Scatter propagation Wave propagation Yttrium |
title | Spin wave computing using pre-recorded magnetization patterns |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T15%3A22%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spin%20wave%20computing%20using%20pre-recorded%20magnetization%20patterns&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Rivkin,%20Kirill&rft.date=2022-10-21&rft.volume=132&rft.issue=15&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0096192&rft_dat=%3Cproquest_cross%3E2727059500%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c327t-ced175b77ff76d890cac89f7280acaf10d586cfd030e9dc314a2c8a887b3ca533%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2727059500&rft_id=info:pmid/&rfr_iscdi=true |