Loading…
Wave propagation in chiral stiffness metamaterials
The dynamic behavior of chiral stiffness metamaterials is studied in this work. The equivalent stiffness parameters of chiral structures with different characteristic angles are obtained by a finite element method. A periodic chain composed of chiral cells is equivalent to a coupled spring-mass chai...
Saved in:
Published in: | Journal of applied physics 2023-01, Vol.133 (2) |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The dynamic behavior of chiral stiffness metamaterials is studied in this work. The equivalent stiffness parameters of chiral structures with different characteristic angles are obtained by a finite element method. A periodic chain composed of chiral cells is equivalent to a coupled spring-mass chain, which is solved theoretically and numerically to validate wave mode conversion and splitting. Furthermore, a locally coupled resonant metamaterial chain based on different chiral structures and disks is established. The dual bandgap of a single oscillator is verified experimentally and by the finite element method. The special wave splitting phenomenon residing in a coupled resonance dispersion crossover is verified numerically. Therefore, chiral stiffness metamaterials have a reference value for the design of the particularity of wave propagation. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/5.0123475 |