Loading…

Topological spectral bands with frieze groups

Frieze groups are discrete subgroups of the full group of isometries of a flat strip. We investigate here the dynamics of specific architected materials generated by acting with a frieze group on a collection of self-coupling seed resonators. We demonstrate that, under unrestricted reconfigurations...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mathematical physics 2024-06, Vol.65 (6)
Main Authors: Lux, Fabian R., Stoiber, Tom, Wang, Shaoyun, Huang, Guoliang, Prodan, Emil
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c217t-461baba0eb329f29367b949261a2f7602e3a5cd397a21b26020ba052649136f23
container_end_page
container_issue 6
container_start_page
container_title Journal of mathematical physics
container_volume 65
creator Lux, Fabian R.
Stoiber, Tom
Wang, Shaoyun
Huang, Guoliang
Prodan, Emil
description Frieze groups are discrete subgroups of the full group of isometries of a flat strip. We investigate here the dynamics of specific architected materials generated by acting with a frieze group on a collection of self-coupling seed resonators. We demonstrate that, under unrestricted reconfigurations of the internal structures of the seed resonators, the dynamical matrices of the materials generate the full self-adjoint sector of the stabilized group C*-algebra of the frieze group. As a consequence, in applications where the positions, orientations and internal structures of the seed resonators are adiabatically modified, the spectral bands of the dynamical matrices carry a complete set of topological invariants that are fully accounted by the K-theory of the mentioned algebra. By resolving the generators of the K-theory, we produce the model dynamical matrices that carry the elementary topological charges, which we implement with systems of plate resonators to showcase several applications in spectral engineering. The paper is written in an expository style.
doi_str_mv 10.1063/5.0127973
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0127973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3073332364</sourcerecordid><originalsourceid>FETCH-LOGICAL-c217t-461baba0eb329f29367b949261a2f7602e3a5cd397a21b26020ba052649136f23</originalsourceid><addsrcrecordid>eNp90MFKxDAQBuAgCtbVg29Q8KTQdTKTJs1RFleFBS_rOaTddO1Sm5q0iD69le7Z0wzDxz_wM3bNYclB0n2-BI5KKzphCYdCZ0rmxSlLABAzFEVxzi5iPABwXgiRsGzre9_6fVPZNo29q4YwLaXtdjH9aob3tA6N-3HpPvixj5fsrLZtdFfHuWBv68ft6jnbvD69rB42WYVcDZmQvLSlBVcS6ho1SVVqoVFyi7WSgI5sXu1IK4u8xOkAk85RCs1J1kgLdjPn9sF_ji4O5uDH0E0vDYEiIiQpJnU7qyr4GIOrTR-aDxu-DQfz14bJzbGNyd7NNlbNYIfGd__gX7XpXFM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3073332364</pqid></control><display><type>article</type><title>Topological spectral bands with frieze groups</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP Journals (American Institute of Physics)</source><creator>Lux, Fabian R. ; Stoiber, Tom ; Wang, Shaoyun ; Huang, Guoliang ; Prodan, Emil</creator><creatorcontrib>Lux, Fabian R. ; Stoiber, Tom ; Wang, Shaoyun ; Huang, Guoliang ; Prodan, Emil</creatorcontrib><description>Frieze groups are discrete subgroups of the full group of isometries of a flat strip. We investigate here the dynamics of specific architected materials generated by acting with a frieze group on a collection of self-coupling seed resonators. We demonstrate that, under unrestricted reconfigurations of the internal structures of the seed resonators, the dynamical matrices of the materials generate the full self-adjoint sector of the stabilized group C*-algebra of the frieze group. As a consequence, in applications where the positions, orientations and internal structures of the seed resonators are adiabatically modified, the spectral bands of the dynamical matrices carry a complete set of topological invariants that are fully accounted by the K-theory of the mentioned algebra. By resolving the generators of the K-theory, we produce the model dynamical matrices that carry the elementary topological charges, which we implement with systems of plate resonators to showcase several applications in spectral engineering. The paper is written in an expository style.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/5.0127973</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>Algebra ; Band spectra ; Banded structure ; Group theory ; Resonators ; Spectral bands ; Subgroups ; Topology</subject><ispartof>Journal of mathematical physics, 2024-06, Vol.65 (6)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c217t-461baba0eb329f29367b949261a2f7602e3a5cd397a21b26020ba052649136f23</cites><orcidid>0000-0002-6238-6127 ; 0000-0003-4658-1878 ; 0000-0001-8940-6629 ; 0000-0002-5018-8430</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/5.0127973$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,782,784,795,27923,27924,76154</link.rule.ids></links><search><creatorcontrib>Lux, Fabian R.</creatorcontrib><creatorcontrib>Stoiber, Tom</creatorcontrib><creatorcontrib>Wang, Shaoyun</creatorcontrib><creatorcontrib>Huang, Guoliang</creatorcontrib><creatorcontrib>Prodan, Emil</creatorcontrib><title>Topological spectral bands with frieze groups</title><title>Journal of mathematical physics</title><description>Frieze groups are discrete subgroups of the full group of isometries of a flat strip. We investigate here the dynamics of specific architected materials generated by acting with a frieze group on a collection of self-coupling seed resonators. We demonstrate that, under unrestricted reconfigurations of the internal structures of the seed resonators, the dynamical matrices of the materials generate the full self-adjoint sector of the stabilized group C*-algebra of the frieze group. As a consequence, in applications where the positions, orientations and internal structures of the seed resonators are adiabatically modified, the spectral bands of the dynamical matrices carry a complete set of topological invariants that are fully accounted by the K-theory of the mentioned algebra. By resolving the generators of the K-theory, we produce the model dynamical matrices that carry the elementary topological charges, which we implement with systems of plate resonators to showcase several applications in spectral engineering. The paper is written in an expository style.</description><subject>Algebra</subject><subject>Band spectra</subject><subject>Banded structure</subject><subject>Group theory</subject><subject>Resonators</subject><subject>Spectral bands</subject><subject>Subgroups</subject><subject>Topology</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp90MFKxDAQBuAgCtbVg29Q8KTQdTKTJs1RFleFBS_rOaTddO1Sm5q0iD69le7Z0wzDxz_wM3bNYclB0n2-BI5KKzphCYdCZ0rmxSlLABAzFEVxzi5iPABwXgiRsGzre9_6fVPZNo29q4YwLaXtdjH9aob3tA6N-3HpPvixj5fsrLZtdFfHuWBv68ft6jnbvD69rB42WYVcDZmQvLSlBVcS6ho1SVVqoVFyi7WSgI5sXu1IK4u8xOkAk85RCs1J1kgLdjPn9sF_ji4O5uDH0E0vDYEiIiQpJnU7qyr4GIOrTR-aDxu-DQfz14bJzbGNyd7NNlbNYIfGd__gX7XpXFM</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Lux, Fabian R.</creator><creator>Stoiber, Tom</creator><creator>Wang, Shaoyun</creator><creator>Huang, Guoliang</creator><creator>Prodan, Emil</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6238-6127</orcidid><orcidid>https://orcid.org/0000-0003-4658-1878</orcidid><orcidid>https://orcid.org/0000-0001-8940-6629</orcidid><orcidid>https://orcid.org/0000-0002-5018-8430</orcidid></search><sort><creationdate>20240601</creationdate><title>Topological spectral bands with frieze groups</title><author>Lux, Fabian R. ; Stoiber, Tom ; Wang, Shaoyun ; Huang, Guoliang ; Prodan, Emil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c217t-461baba0eb329f29367b949261a2f7602e3a5cd397a21b26020ba052649136f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algebra</topic><topic>Band spectra</topic><topic>Banded structure</topic><topic>Group theory</topic><topic>Resonators</topic><topic>Spectral bands</topic><topic>Subgroups</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lux, Fabian R.</creatorcontrib><creatorcontrib>Stoiber, Tom</creatorcontrib><creatorcontrib>Wang, Shaoyun</creatorcontrib><creatorcontrib>Huang, Guoliang</creatorcontrib><creatorcontrib>Prodan, Emil</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lux, Fabian R.</au><au>Stoiber, Tom</au><au>Wang, Shaoyun</au><au>Huang, Guoliang</au><au>Prodan, Emil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topological spectral bands with frieze groups</atitle><jtitle>Journal of mathematical physics</jtitle><date>2024-06-01</date><risdate>2024</risdate><volume>65</volume><issue>6</issue><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>Frieze groups are discrete subgroups of the full group of isometries of a flat strip. We investigate here the dynamics of specific architected materials generated by acting with a frieze group on a collection of self-coupling seed resonators. We demonstrate that, under unrestricted reconfigurations of the internal structures of the seed resonators, the dynamical matrices of the materials generate the full self-adjoint sector of the stabilized group C*-algebra of the frieze group. As a consequence, in applications where the positions, orientations and internal structures of the seed resonators are adiabatically modified, the spectral bands of the dynamical matrices carry a complete set of topological invariants that are fully accounted by the K-theory of the mentioned algebra. By resolving the generators of the K-theory, we produce the model dynamical matrices that carry the elementary topological charges, which we implement with systems of plate resonators to showcase several applications in spectral engineering. The paper is written in an expository style.</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0127973</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-6238-6127</orcidid><orcidid>https://orcid.org/0000-0003-4658-1878</orcidid><orcidid>https://orcid.org/0000-0001-8940-6629</orcidid><orcidid>https://orcid.org/0000-0002-5018-8430</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 2024-06, Vol.65 (6)
issn 0022-2488
1089-7658
language eng
recordid cdi_crossref_primary_10_1063_5_0127973
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP Journals (American Institute of Physics)
subjects Algebra
Band spectra
Banded structure
Group theory
Resonators
Spectral bands
Subgroups
Topology
title Topological spectral bands with frieze groups
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T22%3A25%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topological%20spectral%20bands%20with%20frieze%20groups&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Lux,%20Fabian%20R.&rft.date=2024-06-01&rft.volume=65&rft.issue=6&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/5.0127973&rft_dat=%3Cproquest_cross%3E3073332364%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c217t-461baba0eb329f29367b949261a2f7602e3a5cd397a21b26020ba052649136f23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3073332364&rft_id=info:pmid/&rfr_iscdi=true