Loading…
Topological spectral bands with frieze groups
Frieze groups are discrete subgroups of the full group of isometries of a flat strip. We investigate here the dynamics of specific architected materials generated by acting with a frieze group on a collection of self-coupling seed resonators. We demonstrate that, under unrestricted reconfigurations...
Saved in:
Published in: | Journal of mathematical physics 2024-06, Vol.65 (6) |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c217t-461baba0eb329f29367b949261a2f7602e3a5cd397a21b26020ba052649136f23 |
container_end_page | |
container_issue | 6 |
container_start_page | |
container_title | Journal of mathematical physics |
container_volume | 65 |
creator | Lux, Fabian R. Stoiber, Tom Wang, Shaoyun Huang, Guoliang Prodan, Emil |
description | Frieze groups are discrete subgroups of the full group of isometries of a flat strip. We investigate here the dynamics of specific architected materials generated by acting with a frieze group on a collection of self-coupling seed resonators. We demonstrate that, under unrestricted reconfigurations of the internal structures of the seed resonators, the dynamical matrices of the materials generate the full self-adjoint sector of the stabilized group C*-algebra of the frieze group. As a consequence, in applications where the positions, orientations and internal structures of the seed resonators are adiabatically modified, the spectral bands of the dynamical matrices carry a complete set of topological invariants that are fully accounted by the K-theory of the mentioned algebra. By resolving the generators of the K-theory, we produce the model dynamical matrices that carry the elementary topological charges, which we implement with systems of plate resonators to showcase several applications in spectral engineering. The paper is written in an expository style. |
doi_str_mv | 10.1063/5.0127973 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0127973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3073332364</sourcerecordid><originalsourceid>FETCH-LOGICAL-c217t-461baba0eb329f29367b949261a2f7602e3a5cd397a21b26020ba052649136f23</originalsourceid><addsrcrecordid>eNp90MFKxDAQBuAgCtbVg29Q8KTQdTKTJs1RFleFBS_rOaTddO1Sm5q0iD69le7Z0wzDxz_wM3bNYclB0n2-BI5KKzphCYdCZ0rmxSlLABAzFEVxzi5iPABwXgiRsGzre9_6fVPZNo29q4YwLaXtdjH9aob3tA6N-3HpPvixj5fsrLZtdFfHuWBv68ft6jnbvD69rB42WYVcDZmQvLSlBVcS6ho1SVVqoVFyi7WSgI5sXu1IK4u8xOkAk85RCs1J1kgLdjPn9sF_ji4O5uDH0E0vDYEiIiQpJnU7qyr4GIOrTR-aDxu-DQfz14bJzbGNyd7NNlbNYIfGd__gX7XpXFM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3073332364</pqid></control><display><type>article</type><title>Topological spectral bands with frieze groups</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP Journals (American Institute of Physics)</source><creator>Lux, Fabian R. ; Stoiber, Tom ; Wang, Shaoyun ; Huang, Guoliang ; Prodan, Emil</creator><creatorcontrib>Lux, Fabian R. ; Stoiber, Tom ; Wang, Shaoyun ; Huang, Guoliang ; Prodan, Emil</creatorcontrib><description>Frieze groups are discrete subgroups of the full group of isometries of a flat strip. We investigate here the dynamics of specific architected materials generated by acting with a frieze group on a collection of self-coupling seed resonators. We demonstrate that, under unrestricted reconfigurations of the internal structures of the seed resonators, the dynamical matrices of the materials generate the full self-adjoint sector of the stabilized group C*-algebra of the frieze group. As a consequence, in applications where the positions, orientations and internal structures of the seed resonators are adiabatically modified, the spectral bands of the dynamical matrices carry a complete set of topological invariants that are fully accounted by the K-theory of the mentioned algebra. By resolving the generators of the K-theory, we produce the model dynamical matrices that carry the elementary topological charges, which we implement with systems of plate resonators to showcase several applications in spectral engineering. The paper is written in an expository style.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/5.0127973</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>Algebra ; Band spectra ; Banded structure ; Group theory ; Resonators ; Spectral bands ; Subgroups ; Topology</subject><ispartof>Journal of mathematical physics, 2024-06, Vol.65 (6)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c217t-461baba0eb329f29367b949261a2f7602e3a5cd397a21b26020ba052649136f23</cites><orcidid>0000-0002-6238-6127 ; 0000-0003-4658-1878 ; 0000-0001-8940-6629 ; 0000-0002-5018-8430</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/5.0127973$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,782,784,795,27923,27924,76154</link.rule.ids></links><search><creatorcontrib>Lux, Fabian R.</creatorcontrib><creatorcontrib>Stoiber, Tom</creatorcontrib><creatorcontrib>Wang, Shaoyun</creatorcontrib><creatorcontrib>Huang, Guoliang</creatorcontrib><creatorcontrib>Prodan, Emil</creatorcontrib><title>Topological spectral bands with frieze groups</title><title>Journal of mathematical physics</title><description>Frieze groups are discrete subgroups of the full group of isometries of a flat strip. We investigate here the dynamics of specific architected materials generated by acting with a frieze group on a collection of self-coupling seed resonators. We demonstrate that, under unrestricted reconfigurations of the internal structures of the seed resonators, the dynamical matrices of the materials generate the full self-adjoint sector of the stabilized group C*-algebra of the frieze group. As a consequence, in applications where the positions, orientations and internal structures of the seed resonators are adiabatically modified, the spectral bands of the dynamical matrices carry a complete set of topological invariants that are fully accounted by the K-theory of the mentioned algebra. By resolving the generators of the K-theory, we produce the model dynamical matrices that carry the elementary topological charges, which we implement with systems of plate resonators to showcase several applications in spectral engineering. The paper is written in an expository style.</description><subject>Algebra</subject><subject>Band spectra</subject><subject>Banded structure</subject><subject>Group theory</subject><subject>Resonators</subject><subject>Spectral bands</subject><subject>Subgroups</subject><subject>Topology</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp90MFKxDAQBuAgCtbVg29Q8KTQdTKTJs1RFleFBS_rOaTddO1Sm5q0iD69le7Z0wzDxz_wM3bNYclB0n2-BI5KKzphCYdCZ0rmxSlLABAzFEVxzi5iPABwXgiRsGzre9_6fVPZNo29q4YwLaXtdjH9aob3tA6N-3HpPvixj5fsrLZtdFfHuWBv68ft6jnbvD69rB42WYVcDZmQvLSlBVcS6ho1SVVqoVFyi7WSgI5sXu1IK4u8xOkAk85RCs1J1kgLdjPn9sF_ji4O5uDH0E0vDYEiIiQpJnU7qyr4GIOrTR-aDxu-DQfz14bJzbGNyd7NNlbNYIfGd__gX7XpXFM</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Lux, Fabian R.</creator><creator>Stoiber, Tom</creator><creator>Wang, Shaoyun</creator><creator>Huang, Guoliang</creator><creator>Prodan, Emil</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6238-6127</orcidid><orcidid>https://orcid.org/0000-0003-4658-1878</orcidid><orcidid>https://orcid.org/0000-0001-8940-6629</orcidid><orcidid>https://orcid.org/0000-0002-5018-8430</orcidid></search><sort><creationdate>20240601</creationdate><title>Topological spectral bands with frieze groups</title><author>Lux, Fabian R. ; Stoiber, Tom ; Wang, Shaoyun ; Huang, Guoliang ; Prodan, Emil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c217t-461baba0eb329f29367b949261a2f7602e3a5cd397a21b26020ba052649136f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algebra</topic><topic>Band spectra</topic><topic>Banded structure</topic><topic>Group theory</topic><topic>Resonators</topic><topic>Spectral bands</topic><topic>Subgroups</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lux, Fabian R.</creatorcontrib><creatorcontrib>Stoiber, Tom</creatorcontrib><creatorcontrib>Wang, Shaoyun</creatorcontrib><creatorcontrib>Huang, Guoliang</creatorcontrib><creatorcontrib>Prodan, Emil</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lux, Fabian R.</au><au>Stoiber, Tom</au><au>Wang, Shaoyun</au><au>Huang, Guoliang</au><au>Prodan, Emil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topological spectral bands with frieze groups</atitle><jtitle>Journal of mathematical physics</jtitle><date>2024-06-01</date><risdate>2024</risdate><volume>65</volume><issue>6</issue><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>Frieze groups are discrete subgroups of the full group of isometries of a flat strip. We investigate here the dynamics of specific architected materials generated by acting with a frieze group on a collection of self-coupling seed resonators. We demonstrate that, under unrestricted reconfigurations of the internal structures of the seed resonators, the dynamical matrices of the materials generate the full self-adjoint sector of the stabilized group C*-algebra of the frieze group. As a consequence, in applications where the positions, orientations and internal structures of the seed resonators are adiabatically modified, the spectral bands of the dynamical matrices carry a complete set of topological invariants that are fully accounted by the K-theory of the mentioned algebra. By resolving the generators of the K-theory, we produce the model dynamical matrices that carry the elementary topological charges, which we implement with systems of plate resonators to showcase several applications in spectral engineering. The paper is written in an expository style.</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0127973</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-6238-6127</orcidid><orcidid>https://orcid.org/0000-0003-4658-1878</orcidid><orcidid>https://orcid.org/0000-0001-8940-6629</orcidid><orcidid>https://orcid.org/0000-0002-5018-8430</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2488 |
ispartof | Journal of mathematical physics, 2024-06, Vol.65 (6) |
issn | 0022-2488 1089-7658 |
language | eng |
recordid | cdi_crossref_primary_10_1063_5_0127973 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP Journals (American Institute of Physics) |
subjects | Algebra Band spectra Banded structure Group theory Resonators Spectral bands Subgroups Topology |
title | Topological spectral bands with frieze groups |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T22%3A25%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topological%20spectral%20bands%20with%20frieze%20groups&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Lux,%20Fabian%20R.&rft.date=2024-06-01&rft.volume=65&rft.issue=6&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/5.0127973&rft_dat=%3Cproquest_cross%3E3073332364%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c217t-461baba0eb329f29367b949261a2f7602e3a5cd397a21b26020ba052649136f23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3073332364&rft_id=info:pmid/&rfr_iscdi=true |