Loading…
Building compact superconducting microwave resonators with Hilbert space-filling curves
Superconducting quantum computing is currently one of the most promising platforms for universal quantum information processing. The readout resonator is an essential integral part of a superconducting qubit, while its size is much larger compared to the Josephson junction. We propose and realize a...
Saved in:
Published in: | Applied physics letters 2022-12, Vol.121 (25) |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Superconducting quantum computing is currently one of the most promising platforms for universal quantum information processing. The readout resonator is an essential integral part of a superconducting qubit, while its size is much larger compared to the Josephson junction. We propose and realize a new readout resonator using space-filling curves, specifically Hilbert space-filling curves. We introduce the frequency analysis method and demonstrate a qubit sample, in which the Hilbert-space-filling-curves resonator (HSFCR) is used to read out the qubit states. We also propose to fabricate the HSFCRs and Josephson junctions simultaneously in the same processes of E-beam lithography and E-beam evaporation. Our design reduces the resonator area sufficiently and, thus, will help to improve the integration of superconducting qubits, as well as to design other superconducting quantum devices. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/5.0128964 |