Loading…
Enhanced dielectric and energy storage properties of P(VDF-HFP) through elevating β-phase formation under unipolar nanosecond electric pulses
Structural manipulation of electroactive β-phase of poly(vinylidene fluoride-co-hexafluoropropylene) [P(VDF-HFP)] is of great importance in high-energy-density polymer devices. In this Letter, an efficient way to improve dielectric and energy storage properties of P(VDF-HFP) films by inducing a high...
Saved in:
Published in: | Applied physics letters 2023-01, Vol.122 (2) |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Structural manipulation of electroactive β-phase of poly(vinylidene fluoride-co-hexafluoropropylene) [P(VDF-HFP)] is of great importance in high-energy-density polymer devices. In this Letter, an efficient way to improve dielectric and energy storage properties of P(VDF-HFP) films by inducing a high β-phase content and lowering the crystallite size through repetitive unipolar nanosecond electric pulses (nsEP) is proposed. It is found that the percentage of the β-phase in P(VDF-HFP) can be significantly enhanced to ∼84% under a low unipolar nsEP of 5 V/mm vs only 35% in pristine P(VDF-HFP). Meanwhile, the orientation of the amorphous chains is also achieved, which improves the dielectric constant, electric breakdown, and energy storage properties of P(VDF-HFP). Specifically, the P(VDF-HFP) film processed under nsEP of 5 V/mm exhibits a high breakdown field of 541 MV/m, and discharged energy density of 14 J/cm3, which is 28.8% and 127% higher than those of the pristine polymer, respectively. This work provides a facile approach to optimize the crystalline morphology of P(VDF-HFP) polymers for dielectric energy storage applications. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/5.0128998 |