Loading…
Understanding the sources of error in MBAR through asymptotic analysis
Many sampling strategies commonly used in molecular dynamics, such as umbrella sampling and alchemical free energy methods, involve sampling from multiple states. The Multistate Bennett Acceptance Ratio (MBAR) formalism is a widely used way of recombining the resulting data. However, the error of th...
Saved in:
Published in: | The Journal of chemical physics 2023-06, Vol.158 (21) |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c439t-965552f91d594512f949b7fe0d2b82a34b880af05cf272fba9e29a22105370c53 |
---|---|
cites | cdi_FETCH-LOGICAL-c439t-965552f91d594512f949b7fe0d2b82a34b880af05cf272fba9e29a22105370c53 |
container_end_page | |
container_issue | 21 |
container_start_page | |
container_title | The Journal of chemical physics |
container_volume | 158 |
creator | Li, Xiang Sherry Van Koten, Brian Dinner, Aaron R. Thiede, Erik H. |
description | Many sampling strategies commonly used in molecular dynamics, such as umbrella sampling and alchemical free energy methods, involve sampling from multiple states. The Multistate Bennett Acceptance Ratio (MBAR) formalism is a widely used way of recombining the resulting data. However, the error of the MBAR estimator is not well-understood: previous error analyses of MBAR assumed independent samples. In this work, we derive a central limit theorem for MBAR estimates in the presence of correlated data, further justifying the use of MBAR in practical applications. Moreover, our central limit theorem yields an estimate of the error that can be decomposed into contributions from the individual Markov chains used to sample the states. This gives additional insight into how sampling in each state affects the overall error. We demonstrate our error estimator on an umbrella sampling calculation of the free energy of isomerization of the alanine dipeptide and an alchemical calculation of the hydration free energy of methane. Our numerical results demonstrate that the time required for the Markov chain to decorrelate in individual states can contribute considerably to the total MBAR error, highlighting the importance of accurately addressing the effect of sample correlation. |
doi_str_mv | 10.1063/5.0147243 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0147243</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2821453857</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-965552f91d594512f949b7fe0d2b82a34b880af05cf272fba9e29a22105370c53</originalsourceid><addsrcrecordid>eNp90d9LHDEQB_Agil6tD_4DZcEXWzid_NrdPMkptRUUodTnkM0md5G95JpkhfvvTbmr1UJ9ysB8-DKZQegYwxmGmp7zM8CsIYzuoAmGVkybWsAumgAQPBU11AfoQ0qPAICL2kcHtCFcCFFP0PWD701MWfne-XmVF6ZKYYzapCrYysQYYuV8dXc5-1GaMYzzRaXSernKITtdKa-GdXLpI9qzakjmaPseoofrrz-vvk9v77_dXM1up5pRkcssnHNiBe65YByXiomusQZ60rVEUda1LSgLXFvSENspYYhQhGDgtAHN6SG62OSuxm5pem18jmqQq-iWKq5lUE6-7Xi3kPPwJMtaGC-rKAmn24QYfo0mZbl0SZthUN6EMUnSElwzhkld6Mk_9LGspvx4oxinLW-K-rxROoaUorEv02CQv88judyep9hPr8d_kX_uUcCXDUjaZZVd8O-m_Rc_hfgXylVv6TOpdKVj</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2821453857</pqid></control><display><type>article</type><title>Understanding the sources of error in MBAR through asymptotic analysis</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP_美国物理联合会现刊(与NSTL共建)</source><creator>Li, Xiang Sherry ; Van Koten, Brian ; Dinner, Aaron R. ; Thiede, Erik H.</creator><creatorcontrib>Li, Xiang Sherry ; Van Koten, Brian ; Dinner, Aaron R. ; Thiede, Erik H.</creatorcontrib><description>Many sampling strategies commonly used in molecular dynamics, such as umbrella sampling and alchemical free energy methods, involve sampling from multiple states. The Multistate Bennett Acceptance Ratio (MBAR) formalism is a widely used way of recombining the resulting data. However, the error of the MBAR estimator is not well-understood: previous error analyses of MBAR assumed independent samples. In this work, we derive a central limit theorem for MBAR estimates in the presence of correlated data, further justifying the use of MBAR in practical applications. Moreover, our central limit theorem yields an estimate of the error that can be decomposed into contributions from the individual Markov chains used to sample the states. This gives additional insight into how sampling in each state affects the overall error. We demonstrate our error estimator on an umbrella sampling calculation of the free energy of isomerization of the alanine dipeptide and an alchemical calculation of the hydration free energy of methane. Our numerical results demonstrate that the time required for the Markov chain to decorrelate in individual states can contribute considerably to the total MBAR error, highlighting the importance of accurately addressing the effect of sample correlation.</description><identifier>ISSN: 0021-9606</identifier><identifier>ISSN: 1089-7690</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0147243</identifier><identifier>PMID: 37259996</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Alanine ; Central limit theorem ; Energy methods ; Error analysis ; Free energy ; Isomerization ; Markov chains ; Mathematical analysis ; Molecular dynamics ; Physics ; Sampling ; Theorems</subject><ispartof>The Journal of chemical physics, 2023-06, Vol.158 (21)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><rights>2023 Author(s). 2023 Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-965552f91d594512f949b7fe0d2b82a34b880af05cf272fba9e29a22105370c53</citedby><cites>FETCH-LOGICAL-c439t-965552f91d594512f949b7fe0d2b82a34b880af05cf272fba9e29a22105370c53</cites><orcidid>0009-0008-1969-9567 ; 0000-0002-0225-7550 ; 0000-0001-8328-6427 ; 0000-0002-5666-1372</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0147243$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,782,784,795,885,27924,27925,76383</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37259996$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Xiang Sherry</creatorcontrib><creatorcontrib>Van Koten, Brian</creatorcontrib><creatorcontrib>Dinner, Aaron R.</creatorcontrib><creatorcontrib>Thiede, Erik H.</creatorcontrib><title>Understanding the sources of error in MBAR through asymptotic analysis</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>Many sampling strategies commonly used in molecular dynamics, such as umbrella sampling and alchemical free energy methods, involve sampling from multiple states. The Multistate Bennett Acceptance Ratio (MBAR) formalism is a widely used way of recombining the resulting data. However, the error of the MBAR estimator is not well-understood: previous error analyses of MBAR assumed independent samples. In this work, we derive a central limit theorem for MBAR estimates in the presence of correlated data, further justifying the use of MBAR in practical applications. Moreover, our central limit theorem yields an estimate of the error that can be decomposed into contributions from the individual Markov chains used to sample the states. This gives additional insight into how sampling in each state affects the overall error. We demonstrate our error estimator on an umbrella sampling calculation of the free energy of isomerization of the alanine dipeptide and an alchemical calculation of the hydration free energy of methane. Our numerical results demonstrate that the time required for the Markov chain to decorrelate in individual states can contribute considerably to the total MBAR error, highlighting the importance of accurately addressing the effect of sample correlation.</description><subject>Alanine</subject><subject>Central limit theorem</subject><subject>Energy methods</subject><subject>Error analysis</subject><subject>Free energy</subject><subject>Isomerization</subject><subject>Markov chains</subject><subject>Mathematical analysis</subject><subject>Molecular dynamics</subject><subject>Physics</subject><subject>Sampling</subject><subject>Theorems</subject><issn>0021-9606</issn><issn>1089-7690</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp90d9LHDEQB_Agil6tD_4DZcEXWzid_NrdPMkptRUUodTnkM0md5G95JpkhfvvTbmr1UJ9ysB8-DKZQegYwxmGmp7zM8CsIYzuoAmGVkybWsAumgAQPBU11AfoQ0qPAICL2kcHtCFcCFFP0PWD701MWfne-XmVF6ZKYYzapCrYysQYYuV8dXc5-1GaMYzzRaXSernKITtdKa-GdXLpI9qzakjmaPseoofrrz-vvk9v77_dXM1up5pRkcssnHNiBe65YByXiomusQZ60rVEUda1LSgLXFvSENspYYhQhGDgtAHN6SG62OSuxm5pem18jmqQq-iWKq5lUE6-7Xi3kPPwJMtaGC-rKAmn24QYfo0mZbl0SZthUN6EMUnSElwzhkld6Mk_9LGspvx4oxinLW-K-rxROoaUorEv02CQv88judyep9hPr8d_kX_uUcCXDUjaZZVd8O-m_Rc_hfgXylVv6TOpdKVj</recordid><startdate>20230607</startdate><enddate>20230607</enddate><creator>Li, Xiang Sherry</creator><creator>Van Koten, Brian</creator><creator>Dinner, Aaron R.</creator><creator>Thiede, Erik H.</creator><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0009-0008-1969-9567</orcidid><orcidid>https://orcid.org/0000-0002-0225-7550</orcidid><orcidid>https://orcid.org/0000-0001-8328-6427</orcidid><orcidid>https://orcid.org/0000-0002-5666-1372</orcidid></search><sort><creationdate>20230607</creationdate><title>Understanding the sources of error in MBAR through asymptotic analysis</title><author>Li, Xiang Sherry ; Van Koten, Brian ; Dinner, Aaron R. ; Thiede, Erik H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-965552f91d594512f949b7fe0d2b82a34b880af05cf272fba9e29a22105370c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alanine</topic><topic>Central limit theorem</topic><topic>Energy methods</topic><topic>Error analysis</topic><topic>Free energy</topic><topic>Isomerization</topic><topic>Markov chains</topic><topic>Mathematical analysis</topic><topic>Molecular dynamics</topic><topic>Physics</topic><topic>Sampling</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xiang Sherry</creatorcontrib><creatorcontrib>Van Koten, Brian</creatorcontrib><creatorcontrib>Dinner, Aaron R.</creatorcontrib><creatorcontrib>Thiede, Erik H.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xiang Sherry</au><au>Van Koten, Brian</au><au>Dinner, Aaron R.</au><au>Thiede, Erik H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding the sources of error in MBAR through asymptotic analysis</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2023-06-07</date><risdate>2023</risdate><volume>158</volume><issue>21</issue><issn>0021-9606</issn><issn>1089-7690</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Many sampling strategies commonly used in molecular dynamics, such as umbrella sampling and alchemical free energy methods, involve sampling from multiple states. The Multistate Bennett Acceptance Ratio (MBAR) formalism is a widely used way of recombining the resulting data. However, the error of the MBAR estimator is not well-understood: previous error analyses of MBAR assumed independent samples. In this work, we derive a central limit theorem for MBAR estimates in the presence of correlated data, further justifying the use of MBAR in practical applications. Moreover, our central limit theorem yields an estimate of the error that can be decomposed into contributions from the individual Markov chains used to sample the states. This gives additional insight into how sampling in each state affects the overall error. We demonstrate our error estimator on an umbrella sampling calculation of the free energy of isomerization of the alanine dipeptide and an alchemical calculation of the hydration free energy of methane. Our numerical results demonstrate that the time required for the Markov chain to decorrelate in individual states can contribute considerably to the total MBAR error, highlighting the importance of accurately addressing the effect of sample correlation.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>37259996</pmid><doi>10.1063/5.0147243</doi><tpages>12</tpages><orcidid>https://orcid.org/0009-0008-1969-9567</orcidid><orcidid>https://orcid.org/0000-0002-0225-7550</orcidid><orcidid>https://orcid.org/0000-0001-8328-6427</orcidid><orcidid>https://orcid.org/0000-0002-5666-1372</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2023-06, Vol.158 (21) |
issn | 0021-9606 1089-7690 1089-7690 |
language | eng |
recordid | cdi_crossref_primary_10_1063_5_0147243 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP_美国物理联合会现刊(与NSTL共建) |
subjects | Alanine Central limit theorem Energy methods Error analysis Free energy Isomerization Markov chains Mathematical analysis Molecular dynamics Physics Sampling Theorems |
title | Understanding the sources of error in MBAR through asymptotic analysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A55%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20the%20sources%20of%20error%20in%20MBAR%20through%20asymptotic%20analysis&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Li,%20Xiang%20Sherry&rft.date=2023-06-07&rft.volume=158&rft.issue=21&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0147243&rft_dat=%3Cproquest_cross%3E2821453857%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c439t-965552f91d594512f949b7fe0d2b82a34b880af05cf272fba9e29a22105370c53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2821453857&rft_id=info:pmid/37259996&rfr_iscdi=true |