Loading…

Understanding the sources of error in MBAR through asymptotic analysis

Many sampling strategies commonly used in molecular dynamics, such as umbrella sampling and alchemical free energy methods, involve sampling from multiple states. The Multistate Bennett Acceptance Ratio (MBAR) formalism is a widely used way of recombining the resulting data. However, the error of th...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2023-06, Vol.158 (21)
Main Authors: Li, Xiang Sherry, Van Koten, Brian, Dinner, Aaron R., Thiede, Erik H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c439t-965552f91d594512f949b7fe0d2b82a34b880af05cf272fba9e29a22105370c53
cites cdi_FETCH-LOGICAL-c439t-965552f91d594512f949b7fe0d2b82a34b880af05cf272fba9e29a22105370c53
container_end_page
container_issue 21
container_start_page
container_title The Journal of chemical physics
container_volume 158
creator Li, Xiang Sherry
Van Koten, Brian
Dinner, Aaron R.
Thiede, Erik H.
description Many sampling strategies commonly used in molecular dynamics, such as umbrella sampling and alchemical free energy methods, involve sampling from multiple states. The Multistate Bennett Acceptance Ratio (MBAR) formalism is a widely used way of recombining the resulting data. However, the error of the MBAR estimator is not well-understood: previous error analyses of MBAR assumed independent samples. In this work, we derive a central limit theorem for MBAR estimates in the presence of correlated data, further justifying the use of MBAR in practical applications. Moreover, our central limit theorem yields an estimate of the error that can be decomposed into contributions from the individual Markov chains used to sample the states. This gives additional insight into how sampling in each state affects the overall error. We demonstrate our error estimator on an umbrella sampling calculation of the free energy of isomerization of the alanine dipeptide and an alchemical calculation of the hydration free energy of methane. Our numerical results demonstrate that the time required for the Markov chain to decorrelate in individual states can contribute considerably to the total MBAR error, highlighting the importance of accurately addressing the effect of sample correlation.
doi_str_mv 10.1063/5.0147243
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0147243</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2821453857</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-965552f91d594512f949b7fe0d2b82a34b880af05cf272fba9e29a22105370c53</originalsourceid><addsrcrecordid>eNp90d9LHDEQB_Agil6tD_4DZcEXWzid_NrdPMkptRUUodTnkM0md5G95JpkhfvvTbmr1UJ9ysB8-DKZQegYwxmGmp7zM8CsIYzuoAmGVkybWsAumgAQPBU11AfoQ0qPAICL2kcHtCFcCFFP0PWD701MWfne-XmVF6ZKYYzapCrYysQYYuV8dXc5-1GaMYzzRaXSernKITtdKa-GdXLpI9qzakjmaPseoofrrz-vvk9v77_dXM1up5pRkcssnHNiBe65YByXiomusQZ60rVEUda1LSgLXFvSENspYYhQhGDgtAHN6SG62OSuxm5pem18jmqQq-iWKq5lUE6-7Xi3kPPwJMtaGC-rKAmn24QYfo0mZbl0SZthUN6EMUnSElwzhkld6Mk_9LGspvx4oxinLW-K-rxROoaUorEv02CQv88judyep9hPr8d_kX_uUcCXDUjaZZVd8O-m_Rc_hfgXylVv6TOpdKVj</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2821453857</pqid></control><display><type>article</type><title>Understanding the sources of error in MBAR through asymptotic analysis</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP_美国物理联合会现刊(与NSTL共建)</source><creator>Li, Xiang Sherry ; Van Koten, Brian ; Dinner, Aaron R. ; Thiede, Erik H.</creator><creatorcontrib>Li, Xiang Sherry ; Van Koten, Brian ; Dinner, Aaron R. ; Thiede, Erik H.</creatorcontrib><description>Many sampling strategies commonly used in molecular dynamics, such as umbrella sampling and alchemical free energy methods, involve sampling from multiple states. The Multistate Bennett Acceptance Ratio (MBAR) formalism is a widely used way of recombining the resulting data. However, the error of the MBAR estimator is not well-understood: previous error analyses of MBAR assumed independent samples. In this work, we derive a central limit theorem for MBAR estimates in the presence of correlated data, further justifying the use of MBAR in practical applications. Moreover, our central limit theorem yields an estimate of the error that can be decomposed into contributions from the individual Markov chains used to sample the states. This gives additional insight into how sampling in each state affects the overall error. We demonstrate our error estimator on an umbrella sampling calculation of the free energy of isomerization of the alanine dipeptide and an alchemical calculation of the hydration free energy of methane. Our numerical results demonstrate that the time required for the Markov chain to decorrelate in individual states can contribute considerably to the total MBAR error, highlighting the importance of accurately addressing the effect of sample correlation.</description><identifier>ISSN: 0021-9606</identifier><identifier>ISSN: 1089-7690</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0147243</identifier><identifier>PMID: 37259996</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Alanine ; Central limit theorem ; Energy methods ; Error analysis ; Free energy ; Isomerization ; Markov chains ; Mathematical analysis ; Molecular dynamics ; Physics ; Sampling ; Theorems</subject><ispartof>The Journal of chemical physics, 2023-06, Vol.158 (21)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><rights>2023 Author(s). 2023 Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-965552f91d594512f949b7fe0d2b82a34b880af05cf272fba9e29a22105370c53</citedby><cites>FETCH-LOGICAL-c439t-965552f91d594512f949b7fe0d2b82a34b880af05cf272fba9e29a22105370c53</cites><orcidid>0009-0008-1969-9567 ; 0000-0002-0225-7550 ; 0000-0001-8328-6427 ; 0000-0002-5666-1372</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0147243$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,782,784,795,885,27924,27925,76383</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37259996$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Xiang Sherry</creatorcontrib><creatorcontrib>Van Koten, Brian</creatorcontrib><creatorcontrib>Dinner, Aaron R.</creatorcontrib><creatorcontrib>Thiede, Erik H.</creatorcontrib><title>Understanding the sources of error in MBAR through asymptotic analysis</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>Many sampling strategies commonly used in molecular dynamics, such as umbrella sampling and alchemical free energy methods, involve sampling from multiple states. The Multistate Bennett Acceptance Ratio (MBAR) formalism is a widely used way of recombining the resulting data. However, the error of the MBAR estimator is not well-understood: previous error analyses of MBAR assumed independent samples. In this work, we derive a central limit theorem for MBAR estimates in the presence of correlated data, further justifying the use of MBAR in practical applications. Moreover, our central limit theorem yields an estimate of the error that can be decomposed into contributions from the individual Markov chains used to sample the states. This gives additional insight into how sampling in each state affects the overall error. We demonstrate our error estimator on an umbrella sampling calculation of the free energy of isomerization of the alanine dipeptide and an alchemical calculation of the hydration free energy of methane. Our numerical results demonstrate that the time required for the Markov chain to decorrelate in individual states can contribute considerably to the total MBAR error, highlighting the importance of accurately addressing the effect of sample correlation.</description><subject>Alanine</subject><subject>Central limit theorem</subject><subject>Energy methods</subject><subject>Error analysis</subject><subject>Free energy</subject><subject>Isomerization</subject><subject>Markov chains</subject><subject>Mathematical analysis</subject><subject>Molecular dynamics</subject><subject>Physics</subject><subject>Sampling</subject><subject>Theorems</subject><issn>0021-9606</issn><issn>1089-7690</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp90d9LHDEQB_Agil6tD_4DZcEXWzid_NrdPMkptRUUodTnkM0md5G95JpkhfvvTbmr1UJ9ysB8-DKZQegYwxmGmp7zM8CsIYzuoAmGVkybWsAumgAQPBU11AfoQ0qPAICL2kcHtCFcCFFP0PWD701MWfne-XmVF6ZKYYzapCrYysQYYuV8dXc5-1GaMYzzRaXSernKITtdKa-GdXLpI9qzakjmaPseoofrrz-vvk9v77_dXM1up5pRkcssnHNiBe65YByXiomusQZ60rVEUda1LSgLXFvSENspYYhQhGDgtAHN6SG62OSuxm5pem18jmqQq-iWKq5lUE6-7Xi3kPPwJMtaGC-rKAmn24QYfo0mZbl0SZthUN6EMUnSElwzhkld6Mk_9LGspvx4oxinLW-K-rxROoaUorEv02CQv88judyep9hPr8d_kX_uUcCXDUjaZZVd8O-m_Rc_hfgXylVv6TOpdKVj</recordid><startdate>20230607</startdate><enddate>20230607</enddate><creator>Li, Xiang Sherry</creator><creator>Van Koten, Brian</creator><creator>Dinner, Aaron R.</creator><creator>Thiede, Erik H.</creator><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0009-0008-1969-9567</orcidid><orcidid>https://orcid.org/0000-0002-0225-7550</orcidid><orcidid>https://orcid.org/0000-0001-8328-6427</orcidid><orcidid>https://orcid.org/0000-0002-5666-1372</orcidid></search><sort><creationdate>20230607</creationdate><title>Understanding the sources of error in MBAR through asymptotic analysis</title><author>Li, Xiang Sherry ; Van Koten, Brian ; Dinner, Aaron R. ; Thiede, Erik H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-965552f91d594512f949b7fe0d2b82a34b880af05cf272fba9e29a22105370c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alanine</topic><topic>Central limit theorem</topic><topic>Energy methods</topic><topic>Error analysis</topic><topic>Free energy</topic><topic>Isomerization</topic><topic>Markov chains</topic><topic>Mathematical analysis</topic><topic>Molecular dynamics</topic><topic>Physics</topic><topic>Sampling</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xiang Sherry</creatorcontrib><creatorcontrib>Van Koten, Brian</creatorcontrib><creatorcontrib>Dinner, Aaron R.</creatorcontrib><creatorcontrib>Thiede, Erik H.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xiang Sherry</au><au>Van Koten, Brian</au><au>Dinner, Aaron R.</au><au>Thiede, Erik H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding the sources of error in MBAR through asymptotic analysis</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2023-06-07</date><risdate>2023</risdate><volume>158</volume><issue>21</issue><issn>0021-9606</issn><issn>1089-7690</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Many sampling strategies commonly used in molecular dynamics, such as umbrella sampling and alchemical free energy methods, involve sampling from multiple states. The Multistate Bennett Acceptance Ratio (MBAR) formalism is a widely used way of recombining the resulting data. However, the error of the MBAR estimator is not well-understood: previous error analyses of MBAR assumed independent samples. In this work, we derive a central limit theorem for MBAR estimates in the presence of correlated data, further justifying the use of MBAR in practical applications. Moreover, our central limit theorem yields an estimate of the error that can be decomposed into contributions from the individual Markov chains used to sample the states. This gives additional insight into how sampling in each state affects the overall error. We demonstrate our error estimator on an umbrella sampling calculation of the free energy of isomerization of the alanine dipeptide and an alchemical calculation of the hydration free energy of methane. Our numerical results demonstrate that the time required for the Markov chain to decorrelate in individual states can contribute considerably to the total MBAR error, highlighting the importance of accurately addressing the effect of sample correlation.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>37259996</pmid><doi>10.1063/5.0147243</doi><tpages>12</tpages><orcidid>https://orcid.org/0009-0008-1969-9567</orcidid><orcidid>https://orcid.org/0000-0002-0225-7550</orcidid><orcidid>https://orcid.org/0000-0001-8328-6427</orcidid><orcidid>https://orcid.org/0000-0002-5666-1372</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2023-06, Vol.158 (21)
issn 0021-9606
1089-7690
1089-7690
language eng
recordid cdi_crossref_primary_10_1063_5_0147243
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP_美国物理联合会现刊(与NSTL共建)
subjects Alanine
Central limit theorem
Energy methods
Error analysis
Free energy
Isomerization
Markov chains
Mathematical analysis
Molecular dynamics
Physics
Sampling
Theorems
title Understanding the sources of error in MBAR through asymptotic analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A55%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20the%20sources%20of%20error%20in%20MBAR%20through%20asymptotic%20analysis&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Li,%20Xiang%20Sherry&rft.date=2023-06-07&rft.volume=158&rft.issue=21&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0147243&rft_dat=%3Cproquest_cross%3E2821453857%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c439t-965552f91d594512f949b7fe0d2b82a34b880af05cf272fba9e29a22105370c53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2821453857&rft_id=info:pmid/37259996&rfr_iscdi=true