Loading…
Backward stimulated Brillouin scattering spatial gain with polarization, spatial, and temporal beam smoothing techniques
A recent study [Ruyer et al., Phys. Rev. E 107, 035208 (2023)] modeling the influence of a random phase plate on the backward stimulated Brillouin scattering growth is here supplemented with the effect of temporal and polarization smoothing. Our analytical predictions are validated by a large number...
Saved in:
Published in: | Physics of plasmas 2023-12, Vol.30 (12) |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c287t-e0a0360172c0b691f9c83d02264ba93e3fb16387dc3482b0c7ca28904a36f9613 |
container_end_page | |
container_issue | 12 |
container_start_page | |
container_title | Physics of plasmas |
container_volume | 30 |
creator | Ruyer, C. Fusaro, A. Capdessus, R. Debayle, A. Loiseau, P. Masson-Laborde, P. E. Morice, O. |
description | A recent study [Ruyer et al., Phys. Rev. E 107, 035208 (2023)] modeling the influence of a random phase plate on the backward stimulated Brillouin scattering growth is here supplemented with the effect of temporal and polarization smoothing. Our analytical predictions are validated by a large number of three dimensional Hera paraxial simulations for various beam smoothing techniques and relevant to most high energy laser facilities. Neglecting all non-linear effects apart from the pump depletion, we then reconstruct the system of differential equations that the backward stimulated Brillouin scattering convective amplification of a smoothed beam propagating in a non-homogeneous plasma satisfies. Its resolution is successfully confronted with our simulation data and prepares the accurate modeling, in a ray tracing scheme, of the effect of laser smoothing techniques on laser plasma instabilities. |
doi_str_mv | 10.1063/5.0161176 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0161176</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2895891937</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-e0a0360172c0b691f9c83d02264ba93e3fb16387dc3482b0c7ca28904a36f9613</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqVw4A0scQI1xY4T2zlCxZ9UiQtI3KKN47QuSRxsRwWenoSWK6ddzX6a0Q5C55TMKeHsOp0TyikV_ABNKJFZJLhIDsddkIjz5O0YnXi_IYQkPJUT9HkL6n0LrsQ-mKavIegS3zpT17Y3LfYKQtDOtCvsOwgGaryCQd-asMadrcGZ70G27ezvPsPQljjoprNuoAsNDfaNtWE9mgSt1q356LU_RUcV1F6f7ecUvd7fvSweo-Xzw9PiZhmpWIoQaQKEcUJFrEjBM1plSrKSxDFPCsiYZlVBOZOiVCyRcUGUUBDLjCTAeJVxyqboYufbOTvmhnxje9cOkfnApTKjGRMDdbmjlLPeO13lnTMNuK-cknwsNk_zfbEDe7VjvTLh9_l_4B9Ft3l0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2895891937</pqid></control><display><type>article</type><title>Backward stimulated Brillouin scattering spatial gain with polarization, spatial, and temporal beam smoothing techniques</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>American Institute of Physics</source><creator>Ruyer, C. ; Fusaro, A. ; Capdessus, R. ; Debayle, A. ; Loiseau, P. ; Masson-Laborde, P. E. ; Morice, O.</creator><creatorcontrib>Ruyer, C. ; Fusaro, A. ; Capdessus, R. ; Debayle, A. ; Loiseau, P. ; Masson-Laborde, P. E. ; Morice, O.</creatorcontrib><description>A recent study [Ruyer et al., Phys. Rev. E 107, 035208 (2023)] modeling the influence of a random phase plate on the backward stimulated Brillouin scattering growth is here supplemented with the effect of temporal and polarization smoothing. Our analytical predictions are validated by a large number of three dimensional Hera paraxial simulations for various beam smoothing techniques and relevant to most high energy laser facilities. Neglecting all non-linear effects apart from the pump depletion, we then reconstruct the system of differential equations that the backward stimulated Brillouin scattering convective amplification of a smoothed beam propagating in a non-homogeneous plasma satisfies. Its resolution is successfully confronted with our simulation data and prepares the accurate modeling, in a ray tracing scheme, of the effect of laser smoothing techniques on laser plasma instabilities.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/5.0161176</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Differential equations ; Laser plasmas ; Magnetohydrodynamic stability ; Modelling ; Phase plates ; Plasma physics ; Polarization ; Ray tracing ; Scattering ; Smoothing</subject><ispartof>Physics of plasmas, 2023-12, Vol.30 (12)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-e0a0360172c0b691f9c83d02264ba93e3fb16387dc3482b0c7ca28904a36f9613</cites><orcidid>0000-0003-4835-0408 ; 0000-0003-4819-3465 ; 0000-0003-2786-9382 ; 0009-0008-9800-4021 ; 0000-0002-3403-6023 ; 0000-0002-3141-8181 ; 0000-0001-9944-1372</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/5.0161176$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,782,784,795,27924,27925,76383</link.rule.ids></links><search><creatorcontrib>Ruyer, C.</creatorcontrib><creatorcontrib>Fusaro, A.</creatorcontrib><creatorcontrib>Capdessus, R.</creatorcontrib><creatorcontrib>Debayle, A.</creatorcontrib><creatorcontrib>Loiseau, P.</creatorcontrib><creatorcontrib>Masson-Laborde, P. E.</creatorcontrib><creatorcontrib>Morice, O.</creatorcontrib><title>Backward stimulated Brillouin scattering spatial gain with polarization, spatial, and temporal beam smoothing techniques</title><title>Physics of plasmas</title><description>A recent study [Ruyer et al., Phys. Rev. E 107, 035208 (2023)] modeling the influence of a random phase plate on the backward stimulated Brillouin scattering growth is here supplemented with the effect of temporal and polarization smoothing. Our analytical predictions are validated by a large number of three dimensional Hera paraxial simulations for various beam smoothing techniques and relevant to most high energy laser facilities. Neglecting all non-linear effects apart from the pump depletion, we then reconstruct the system of differential equations that the backward stimulated Brillouin scattering convective amplification of a smoothed beam propagating in a non-homogeneous plasma satisfies. Its resolution is successfully confronted with our simulation data and prepares the accurate modeling, in a ray tracing scheme, of the effect of laser smoothing techniques on laser plasma instabilities.</description><subject>Differential equations</subject><subject>Laser plasmas</subject><subject>Magnetohydrodynamic stability</subject><subject>Modelling</subject><subject>Phase plates</subject><subject>Plasma physics</subject><subject>Polarization</subject><subject>Ray tracing</subject><subject>Scattering</subject><subject>Smoothing</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqVw4A0scQI1xY4T2zlCxZ9UiQtI3KKN47QuSRxsRwWenoSWK6ddzX6a0Q5C55TMKeHsOp0TyikV_ABNKJFZJLhIDsddkIjz5O0YnXi_IYQkPJUT9HkL6n0LrsQ-mKavIegS3zpT17Y3LfYKQtDOtCvsOwgGaryCQd-asMadrcGZ70G27ezvPsPQljjoprNuoAsNDfaNtWE9mgSt1q356LU_RUcV1F6f7ecUvd7fvSweo-Xzw9PiZhmpWIoQaQKEcUJFrEjBM1plSrKSxDFPCsiYZlVBOZOiVCyRcUGUUBDLjCTAeJVxyqboYufbOTvmhnxje9cOkfnApTKjGRMDdbmjlLPeO13lnTMNuK-cknwsNk_zfbEDe7VjvTLh9_l_4B9Ft3l0</recordid><startdate>202312</startdate><enddate>202312</enddate><creator>Ruyer, C.</creator><creator>Fusaro, A.</creator><creator>Capdessus, R.</creator><creator>Debayle, A.</creator><creator>Loiseau, P.</creator><creator>Masson-Laborde, P. E.</creator><creator>Morice, O.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4835-0408</orcidid><orcidid>https://orcid.org/0000-0003-4819-3465</orcidid><orcidid>https://orcid.org/0000-0003-2786-9382</orcidid><orcidid>https://orcid.org/0009-0008-9800-4021</orcidid><orcidid>https://orcid.org/0000-0002-3403-6023</orcidid><orcidid>https://orcid.org/0000-0002-3141-8181</orcidid><orcidid>https://orcid.org/0000-0001-9944-1372</orcidid></search><sort><creationdate>202312</creationdate><title>Backward stimulated Brillouin scattering spatial gain with polarization, spatial, and temporal beam smoothing techniques</title><author>Ruyer, C. ; Fusaro, A. ; Capdessus, R. ; Debayle, A. ; Loiseau, P. ; Masson-Laborde, P. E. ; Morice, O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-e0a0360172c0b691f9c83d02264ba93e3fb16387dc3482b0c7ca28904a36f9613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Differential equations</topic><topic>Laser plasmas</topic><topic>Magnetohydrodynamic stability</topic><topic>Modelling</topic><topic>Phase plates</topic><topic>Plasma physics</topic><topic>Polarization</topic><topic>Ray tracing</topic><topic>Scattering</topic><topic>Smoothing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ruyer, C.</creatorcontrib><creatorcontrib>Fusaro, A.</creatorcontrib><creatorcontrib>Capdessus, R.</creatorcontrib><creatorcontrib>Debayle, A.</creatorcontrib><creatorcontrib>Loiseau, P.</creatorcontrib><creatorcontrib>Masson-Laborde, P. E.</creatorcontrib><creatorcontrib>Morice, O.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ruyer, C.</au><au>Fusaro, A.</au><au>Capdessus, R.</au><au>Debayle, A.</au><au>Loiseau, P.</au><au>Masson-Laborde, P. E.</au><au>Morice, O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Backward stimulated Brillouin scattering spatial gain with polarization, spatial, and temporal beam smoothing techniques</atitle><jtitle>Physics of plasmas</jtitle><date>2023-12</date><risdate>2023</risdate><volume>30</volume><issue>12</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>A recent study [Ruyer et al., Phys. Rev. E 107, 035208 (2023)] modeling the influence of a random phase plate on the backward stimulated Brillouin scattering growth is here supplemented with the effect of temporal and polarization smoothing. Our analytical predictions are validated by a large number of three dimensional Hera paraxial simulations for various beam smoothing techniques and relevant to most high energy laser facilities. Neglecting all non-linear effects apart from the pump depletion, we then reconstruct the system of differential equations that the backward stimulated Brillouin scattering convective amplification of a smoothed beam propagating in a non-homogeneous plasma satisfies. Its resolution is successfully confronted with our simulation data and prepares the accurate modeling, in a ray tracing scheme, of the effect of laser smoothing techniques on laser plasma instabilities.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0161176</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4835-0408</orcidid><orcidid>https://orcid.org/0000-0003-4819-3465</orcidid><orcidid>https://orcid.org/0000-0003-2786-9382</orcidid><orcidid>https://orcid.org/0009-0008-9800-4021</orcidid><orcidid>https://orcid.org/0000-0002-3403-6023</orcidid><orcidid>https://orcid.org/0000-0002-3141-8181</orcidid><orcidid>https://orcid.org/0000-0001-9944-1372</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-664X |
ispartof | Physics of plasmas, 2023-12, Vol.30 (12) |
issn | 1070-664X 1089-7674 |
language | eng |
recordid | cdi_crossref_primary_10_1063_5_0161176 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); American Institute of Physics |
subjects | Differential equations Laser plasmas Magnetohydrodynamic stability Modelling Phase plates Plasma physics Polarization Ray tracing Scattering Smoothing |
title | Backward stimulated Brillouin scattering spatial gain with polarization, spatial, and temporal beam smoothing techniques |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T15%3A25%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Backward%20stimulated%20Brillouin%20scattering%20spatial%20gain%20with%20polarization,%20spatial,%20and%20temporal%20beam%20smoothing%20techniques&rft.jtitle=Physics%20of%20plasmas&rft.au=Ruyer,%20C.&rft.date=2023-12&rft.volume=30&rft.issue=12&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/5.0161176&rft_dat=%3Cproquest_cross%3E2895891937%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c287t-e0a0360172c0b691f9c83d02264ba93e3fb16387dc3482b0c7ca28904a36f9613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2895891937&rft_id=info:pmid/&rfr_iscdi=true |