Loading…

Backward stimulated Brillouin scattering spatial gain with polarization, spatial, and temporal beam smoothing techniques

A recent study [Ruyer et al., Phys. Rev. E 107, 035208 (2023)] modeling the influence of a random phase plate on the backward stimulated Brillouin scattering growth is here supplemented with the effect of temporal and polarization smoothing. Our analytical predictions are validated by a large number...

Full description

Saved in:
Bibliographic Details
Published in:Physics of plasmas 2023-12, Vol.30 (12)
Main Authors: Ruyer, C., Fusaro, A., Capdessus, R., Debayle, A., Loiseau, P., Masson-Laborde, P. E., Morice, O.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c287t-e0a0360172c0b691f9c83d02264ba93e3fb16387dc3482b0c7ca28904a36f9613
container_end_page
container_issue 12
container_start_page
container_title Physics of plasmas
container_volume 30
creator Ruyer, C.
Fusaro, A.
Capdessus, R.
Debayle, A.
Loiseau, P.
Masson-Laborde, P. E.
Morice, O.
description A recent study [Ruyer et al., Phys. Rev. E 107, 035208 (2023)] modeling the influence of a random phase plate on the backward stimulated Brillouin scattering growth is here supplemented with the effect of temporal and polarization smoothing. Our analytical predictions are validated by a large number of three dimensional Hera paraxial simulations for various beam smoothing techniques and relevant to most high energy laser facilities. Neglecting all non-linear effects apart from the pump depletion, we then reconstruct the system of differential equations that the backward stimulated Brillouin scattering convective amplification of a smoothed beam propagating in a non-homogeneous plasma satisfies. Its resolution is successfully confronted with our simulation data and prepares the accurate modeling, in a ray tracing scheme, of the effect of laser smoothing techniques on laser plasma instabilities.
doi_str_mv 10.1063/5.0161176
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0161176</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2895891937</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-e0a0360172c0b691f9c83d02264ba93e3fb16387dc3482b0c7ca28904a36f9613</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqVw4A0scQI1xY4T2zlCxZ9UiQtI3KKN47QuSRxsRwWenoSWK6ddzX6a0Q5C55TMKeHsOp0TyikV_ABNKJFZJLhIDsddkIjz5O0YnXi_IYQkPJUT9HkL6n0LrsQ-mKavIegS3zpT17Y3LfYKQtDOtCvsOwgGaryCQd-asMadrcGZ70G27ezvPsPQljjoprNuoAsNDfaNtWE9mgSt1q356LU_RUcV1F6f7ecUvd7fvSweo-Xzw9PiZhmpWIoQaQKEcUJFrEjBM1plSrKSxDFPCsiYZlVBOZOiVCyRcUGUUBDLjCTAeJVxyqboYufbOTvmhnxje9cOkfnApTKjGRMDdbmjlLPeO13lnTMNuK-cknwsNk_zfbEDe7VjvTLh9_l_4B9Ft3l0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2895891937</pqid></control><display><type>article</type><title>Backward stimulated Brillouin scattering spatial gain with polarization, spatial, and temporal beam smoothing techniques</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>American Institute of Physics</source><creator>Ruyer, C. ; Fusaro, A. ; Capdessus, R. ; Debayle, A. ; Loiseau, P. ; Masson-Laborde, P. E. ; Morice, O.</creator><creatorcontrib>Ruyer, C. ; Fusaro, A. ; Capdessus, R. ; Debayle, A. ; Loiseau, P. ; Masson-Laborde, P. E. ; Morice, O.</creatorcontrib><description>A recent study [Ruyer et al., Phys. Rev. E 107, 035208 (2023)] modeling the influence of a random phase plate on the backward stimulated Brillouin scattering growth is here supplemented with the effect of temporal and polarization smoothing. Our analytical predictions are validated by a large number of three dimensional Hera paraxial simulations for various beam smoothing techniques and relevant to most high energy laser facilities. Neglecting all non-linear effects apart from the pump depletion, we then reconstruct the system of differential equations that the backward stimulated Brillouin scattering convective amplification of a smoothed beam propagating in a non-homogeneous plasma satisfies. Its resolution is successfully confronted with our simulation data and prepares the accurate modeling, in a ray tracing scheme, of the effect of laser smoothing techniques on laser plasma instabilities.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/5.0161176</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Differential equations ; Laser plasmas ; Magnetohydrodynamic stability ; Modelling ; Phase plates ; Plasma physics ; Polarization ; Ray tracing ; Scattering ; Smoothing</subject><ispartof>Physics of plasmas, 2023-12, Vol.30 (12)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-e0a0360172c0b691f9c83d02264ba93e3fb16387dc3482b0c7ca28904a36f9613</cites><orcidid>0000-0003-4835-0408 ; 0000-0003-4819-3465 ; 0000-0003-2786-9382 ; 0009-0008-9800-4021 ; 0000-0002-3403-6023 ; 0000-0002-3141-8181 ; 0000-0001-9944-1372</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/5.0161176$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,782,784,795,27924,27925,76383</link.rule.ids></links><search><creatorcontrib>Ruyer, C.</creatorcontrib><creatorcontrib>Fusaro, A.</creatorcontrib><creatorcontrib>Capdessus, R.</creatorcontrib><creatorcontrib>Debayle, A.</creatorcontrib><creatorcontrib>Loiseau, P.</creatorcontrib><creatorcontrib>Masson-Laborde, P. E.</creatorcontrib><creatorcontrib>Morice, O.</creatorcontrib><title>Backward stimulated Brillouin scattering spatial gain with polarization, spatial, and temporal beam smoothing techniques</title><title>Physics of plasmas</title><description>A recent study [Ruyer et al., Phys. Rev. E 107, 035208 (2023)] modeling the influence of a random phase plate on the backward stimulated Brillouin scattering growth is here supplemented with the effect of temporal and polarization smoothing. Our analytical predictions are validated by a large number of three dimensional Hera paraxial simulations for various beam smoothing techniques and relevant to most high energy laser facilities. Neglecting all non-linear effects apart from the pump depletion, we then reconstruct the system of differential equations that the backward stimulated Brillouin scattering convective amplification of a smoothed beam propagating in a non-homogeneous plasma satisfies. Its resolution is successfully confronted with our simulation data and prepares the accurate modeling, in a ray tracing scheme, of the effect of laser smoothing techniques on laser plasma instabilities.</description><subject>Differential equations</subject><subject>Laser plasmas</subject><subject>Magnetohydrodynamic stability</subject><subject>Modelling</subject><subject>Phase plates</subject><subject>Plasma physics</subject><subject>Polarization</subject><subject>Ray tracing</subject><subject>Scattering</subject><subject>Smoothing</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqVw4A0scQI1xY4T2zlCxZ9UiQtI3KKN47QuSRxsRwWenoSWK6ddzX6a0Q5C55TMKeHsOp0TyikV_ABNKJFZJLhIDsddkIjz5O0YnXi_IYQkPJUT9HkL6n0LrsQ-mKavIegS3zpT17Y3LfYKQtDOtCvsOwgGaryCQd-asMadrcGZ70G27ezvPsPQljjoprNuoAsNDfaNtWE9mgSt1q356LU_RUcV1F6f7ecUvd7fvSweo-Xzw9PiZhmpWIoQaQKEcUJFrEjBM1plSrKSxDFPCsiYZlVBOZOiVCyRcUGUUBDLjCTAeJVxyqboYufbOTvmhnxje9cOkfnApTKjGRMDdbmjlLPeO13lnTMNuK-cknwsNk_zfbEDe7VjvTLh9_l_4B9Ft3l0</recordid><startdate>202312</startdate><enddate>202312</enddate><creator>Ruyer, C.</creator><creator>Fusaro, A.</creator><creator>Capdessus, R.</creator><creator>Debayle, A.</creator><creator>Loiseau, P.</creator><creator>Masson-Laborde, P. E.</creator><creator>Morice, O.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4835-0408</orcidid><orcidid>https://orcid.org/0000-0003-4819-3465</orcidid><orcidid>https://orcid.org/0000-0003-2786-9382</orcidid><orcidid>https://orcid.org/0009-0008-9800-4021</orcidid><orcidid>https://orcid.org/0000-0002-3403-6023</orcidid><orcidid>https://orcid.org/0000-0002-3141-8181</orcidid><orcidid>https://orcid.org/0000-0001-9944-1372</orcidid></search><sort><creationdate>202312</creationdate><title>Backward stimulated Brillouin scattering spatial gain with polarization, spatial, and temporal beam smoothing techniques</title><author>Ruyer, C. ; Fusaro, A. ; Capdessus, R. ; Debayle, A. ; Loiseau, P. ; Masson-Laborde, P. E. ; Morice, O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-e0a0360172c0b691f9c83d02264ba93e3fb16387dc3482b0c7ca28904a36f9613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Differential equations</topic><topic>Laser plasmas</topic><topic>Magnetohydrodynamic stability</topic><topic>Modelling</topic><topic>Phase plates</topic><topic>Plasma physics</topic><topic>Polarization</topic><topic>Ray tracing</topic><topic>Scattering</topic><topic>Smoothing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ruyer, C.</creatorcontrib><creatorcontrib>Fusaro, A.</creatorcontrib><creatorcontrib>Capdessus, R.</creatorcontrib><creatorcontrib>Debayle, A.</creatorcontrib><creatorcontrib>Loiseau, P.</creatorcontrib><creatorcontrib>Masson-Laborde, P. E.</creatorcontrib><creatorcontrib>Morice, O.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ruyer, C.</au><au>Fusaro, A.</au><au>Capdessus, R.</au><au>Debayle, A.</au><au>Loiseau, P.</au><au>Masson-Laborde, P. E.</au><au>Morice, O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Backward stimulated Brillouin scattering spatial gain with polarization, spatial, and temporal beam smoothing techniques</atitle><jtitle>Physics of plasmas</jtitle><date>2023-12</date><risdate>2023</risdate><volume>30</volume><issue>12</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>A recent study [Ruyer et al., Phys. Rev. E 107, 035208 (2023)] modeling the influence of a random phase plate on the backward stimulated Brillouin scattering growth is here supplemented with the effect of temporal and polarization smoothing. Our analytical predictions are validated by a large number of three dimensional Hera paraxial simulations for various beam smoothing techniques and relevant to most high energy laser facilities. Neglecting all non-linear effects apart from the pump depletion, we then reconstruct the system of differential equations that the backward stimulated Brillouin scattering convective amplification of a smoothed beam propagating in a non-homogeneous plasma satisfies. Its resolution is successfully confronted with our simulation data and prepares the accurate modeling, in a ray tracing scheme, of the effect of laser smoothing techniques on laser plasma instabilities.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0161176</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4835-0408</orcidid><orcidid>https://orcid.org/0000-0003-4819-3465</orcidid><orcidid>https://orcid.org/0000-0003-2786-9382</orcidid><orcidid>https://orcid.org/0009-0008-9800-4021</orcidid><orcidid>https://orcid.org/0000-0002-3403-6023</orcidid><orcidid>https://orcid.org/0000-0002-3141-8181</orcidid><orcidid>https://orcid.org/0000-0001-9944-1372</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-664X
ispartof Physics of plasmas, 2023-12, Vol.30 (12)
issn 1070-664X
1089-7674
language eng
recordid cdi_crossref_primary_10_1063_5_0161176
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); American Institute of Physics
subjects Differential equations
Laser plasmas
Magnetohydrodynamic stability
Modelling
Phase plates
Plasma physics
Polarization
Ray tracing
Scattering
Smoothing
title Backward stimulated Brillouin scattering spatial gain with polarization, spatial, and temporal beam smoothing techniques
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T15%3A25%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Backward%20stimulated%20Brillouin%20scattering%20spatial%20gain%20with%20polarization,%20spatial,%20and%20temporal%20beam%20smoothing%20techniques&rft.jtitle=Physics%20of%20plasmas&rft.au=Ruyer,%20C.&rft.date=2023-12&rft.volume=30&rft.issue=12&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/5.0161176&rft_dat=%3Cproquest_cross%3E2895891937%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c287t-e0a0360172c0b691f9c83d02264ba93e3fb16387dc3482b0c7ca28904a36f9613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2895891937&rft_id=info:pmid/&rfr_iscdi=true