Loading…

Energy mechanism for the instability of liquid jets with thermocapillarity

Xu and Davis [J. Fluid Mech. 161, 1–25 (1985)] examined the stability of long axisymmetric liquid jet subjected to an axial temperature gradient, finding capillary, surface-wave, and hydrodynamic modes. They showed that capillary breakup can be retarded or even suppressed for a small Prandtl number...

Full description

Saved in:
Bibliographic Details
Published in:Physics of fluids (1994) 2023-09, Vol.35 (9)
Main Authors: Sun, Yu-Wen, Hu, Kai-Xin, Chen, Qi-Sheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c287t-8817aa7212da4321f4d5a10afa95421a739a6f5af870da607ec93909560b01e03
container_end_page
container_issue 9
container_start_page
container_title Physics of fluids (1994)
container_volume 35
creator Sun, Yu-Wen
Hu, Kai-Xin
Chen, Qi-Sheng
description Xu and Davis [J. Fluid Mech. 161, 1–25 (1985)] examined the stability of long axisymmetric liquid jet subjected to an axial temperature gradient, finding capillary, surface-wave, and hydrodynamic modes. They showed that capillary breakup can be retarded or even suppressed for a small Prandtl number (Pr 
doi_str_mv 10.1063/5.0166867
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0166867</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2864353158</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-8817aa7212da4321f4d5a10afa95421a739a6f5af870da607ec93909560b01e03</originalsourceid><addsrcrecordid>eNp90EtLAzEUBeAgCtbHwn8QcKUw9SaZPGYppb4ouNF1uJ1JbMo82iRF-u-d0q5dnbP4uBcOIXcMpgyUeJJTYEoZpc_IhIGpCq2UOj90DYVSgl2Sq5TWACAqribkY967-LOnnatX2IfUUT9EmleOhj5lXIY25D0dPG3DdhcaunY50d-QVwcTu6HGTWhbjKO6IRce2-RuT3lNvl_mX7O3YvH5-j57XhQ1NzoXxjCNqDnjDZaCM182Ehmgx0qWnKEWFSov0RsNDSrQrq5EBZVUsATmQFyT--PdTRy2O5eyXQ-72I8vLTeqFFIwaUb1cFR1HFKKzttNDB3GvWVgD1NZaU9TjfbxaFMdMuYw9P_gP7_yaAI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2864353158</pqid></control><display><type>article</type><title>Energy mechanism for the instability of liquid jets with thermocapillarity</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP Digital Archive</source><creator>Sun, Yu-Wen ; Hu, Kai-Xin ; Chen, Qi-Sheng</creator><creatorcontrib>Sun, Yu-Wen ; Hu, Kai-Xin ; Chen, Qi-Sheng</creatorcontrib><description>Xu and Davis [J. Fluid Mech. 161, 1–25 (1985)] examined the stability of long axisymmetric liquid jet subjected to an axial temperature gradient, finding capillary, surface-wave, and hydrodynamic modes. They showed that capillary breakup can be retarded or even suppressed for a small Prandtl number (Pr &lt; 1) and a large Biot number (Bi ≥ 1). In the present work, the energy mechanism is carried out for these three kinds of flow instabilities, and the mechanism of suppressing capillary breakup is clarified. When the Reynolds number (RB) is not large, the work done by the pressure on the free surface (PS) is the main energy source of the capillary instability. At small Pr and large Bi, the phase difference between the radial velocity and surface deformation increases with RB, leading to the decrease in PS, which prevents the occurrence of capillary breakup. Meanwhile, the work done by thermocapillary force becomes the main energy source, making hydrodynamic modes unstable. The perturbation flow fields are displayed, which shows that the temperature fluctuations of three modes differ from each other.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0166867</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Biot number ; Breakup ; Capillary waves ; Energy sources ; Fluid dynamics ; Fluid flow ; Free surfaces ; Perturbation ; Physics ; Prandtl number ; Radial velocity ; Reynolds number ; Thermocapillary force</subject><ispartof>Physics of fluids (1994), 2023-09, Vol.35 (9)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-8817aa7212da4321f4d5a10afa95421a739a6f5af870da607ec93909560b01e03</cites><orcidid>0000-0001-7877-3386 ; 0009-0009-4995-0983</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1559,27924,27925</link.rule.ids></links><search><creatorcontrib>Sun, Yu-Wen</creatorcontrib><creatorcontrib>Hu, Kai-Xin</creatorcontrib><creatorcontrib>Chen, Qi-Sheng</creatorcontrib><title>Energy mechanism for the instability of liquid jets with thermocapillarity</title><title>Physics of fluids (1994)</title><description>Xu and Davis [J. Fluid Mech. 161, 1–25 (1985)] examined the stability of long axisymmetric liquid jet subjected to an axial temperature gradient, finding capillary, surface-wave, and hydrodynamic modes. They showed that capillary breakup can be retarded or even suppressed for a small Prandtl number (Pr &lt; 1) and a large Biot number (Bi ≥ 1). In the present work, the energy mechanism is carried out for these three kinds of flow instabilities, and the mechanism of suppressing capillary breakup is clarified. When the Reynolds number (RB) is not large, the work done by the pressure on the free surface (PS) is the main energy source of the capillary instability. At small Pr and large Bi, the phase difference between the radial velocity and surface deformation increases with RB, leading to the decrease in PS, which prevents the occurrence of capillary breakup. Meanwhile, the work done by thermocapillary force becomes the main energy source, making hydrodynamic modes unstable. The perturbation flow fields are displayed, which shows that the temperature fluctuations of three modes differ from each other.</description><subject>Biot number</subject><subject>Breakup</subject><subject>Capillary waves</subject><subject>Energy sources</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Free surfaces</subject><subject>Perturbation</subject><subject>Physics</subject><subject>Prandtl number</subject><subject>Radial velocity</subject><subject>Reynolds number</subject><subject>Thermocapillary force</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp90EtLAzEUBeAgCtbHwn8QcKUw9SaZPGYppb4ouNF1uJ1JbMo82iRF-u-d0q5dnbP4uBcOIXcMpgyUeJJTYEoZpc_IhIGpCq2UOj90DYVSgl2Sq5TWACAqribkY967-LOnnatX2IfUUT9EmleOhj5lXIY25D0dPG3DdhcaunY50d-QVwcTu6HGTWhbjKO6IRce2-RuT3lNvl_mX7O3YvH5-j57XhQ1NzoXxjCNqDnjDZaCM182Ehmgx0qWnKEWFSov0RsNDSrQrq5EBZVUsATmQFyT--PdTRy2O5eyXQ-72I8vLTeqFFIwaUb1cFR1HFKKzttNDB3GvWVgD1NZaU9TjfbxaFMdMuYw9P_gP7_yaAI</recordid><startdate>202309</startdate><enddate>202309</enddate><creator>Sun, Yu-Wen</creator><creator>Hu, Kai-Xin</creator><creator>Chen, Qi-Sheng</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7877-3386</orcidid><orcidid>https://orcid.org/0009-0009-4995-0983</orcidid></search><sort><creationdate>202309</creationdate><title>Energy mechanism for the instability of liquid jets with thermocapillarity</title><author>Sun, Yu-Wen ; Hu, Kai-Xin ; Chen, Qi-Sheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-8817aa7212da4321f4d5a10afa95421a739a6f5af870da607ec93909560b01e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biot number</topic><topic>Breakup</topic><topic>Capillary waves</topic><topic>Energy sources</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Free surfaces</topic><topic>Perturbation</topic><topic>Physics</topic><topic>Prandtl number</topic><topic>Radial velocity</topic><topic>Reynolds number</topic><topic>Thermocapillary force</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Yu-Wen</creatorcontrib><creatorcontrib>Hu, Kai-Xin</creatorcontrib><creatorcontrib>Chen, Qi-Sheng</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Yu-Wen</au><au>Hu, Kai-Xin</au><au>Chen, Qi-Sheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy mechanism for the instability of liquid jets with thermocapillarity</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2023-09</date><risdate>2023</risdate><volume>35</volume><issue>9</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>Xu and Davis [J. Fluid Mech. 161, 1–25 (1985)] examined the stability of long axisymmetric liquid jet subjected to an axial temperature gradient, finding capillary, surface-wave, and hydrodynamic modes. They showed that capillary breakup can be retarded or even suppressed for a small Prandtl number (Pr &lt; 1) and a large Biot number (Bi ≥ 1). In the present work, the energy mechanism is carried out for these three kinds of flow instabilities, and the mechanism of suppressing capillary breakup is clarified. When the Reynolds number (RB) is not large, the work done by the pressure on the free surface (PS) is the main energy source of the capillary instability. At small Pr and large Bi, the phase difference between the radial velocity and surface deformation increases with RB, leading to the decrease in PS, which prevents the occurrence of capillary breakup. Meanwhile, the work done by thermocapillary force becomes the main energy source, making hydrodynamic modes unstable. The perturbation flow fields are displayed, which shows that the temperature fluctuations of three modes differ from each other.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0166867</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7877-3386</orcidid><orcidid>https://orcid.org/0009-0009-4995-0983</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2023-09, Vol.35 (9)
issn 1070-6631
1089-7666
language eng
recordid cdi_crossref_primary_10_1063_5_0166867
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP Digital Archive
subjects Biot number
Breakup
Capillary waves
Energy sources
Fluid dynamics
Fluid flow
Free surfaces
Perturbation
Physics
Prandtl number
Radial velocity
Reynolds number
Thermocapillary force
title Energy mechanism for the instability of liquid jets with thermocapillarity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A04%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy%20mechanism%20for%20the%20instability%20of%20liquid%20jets%20with%20thermocapillarity&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Sun,%20Yu-Wen&rft.date=2023-09&rft.volume=35&rft.issue=9&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0166867&rft_dat=%3Cproquest_cross%3E2864353158%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c287t-8817aa7212da4321f4d5a10afa95421a739a6f5af870da607ec93909560b01e03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2864353158&rft_id=info:pmid/&rfr_iscdi=true