Loading…
Energy mechanism for the instability of liquid jets with thermocapillarity
Xu and Davis [J. Fluid Mech. 161, 1–25 (1985)] examined the stability of long axisymmetric liquid jet subjected to an axial temperature gradient, finding capillary, surface-wave, and hydrodynamic modes. They showed that capillary breakup can be retarded or even suppressed for a small Prandtl number...
Saved in:
Published in: | Physics of fluids (1994) 2023-09, Vol.35 (9) |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c287t-8817aa7212da4321f4d5a10afa95421a739a6f5af870da607ec93909560b01e03 |
container_end_page | |
container_issue | 9 |
container_start_page | |
container_title | Physics of fluids (1994) |
container_volume | 35 |
creator | Sun, Yu-Wen Hu, Kai-Xin Chen, Qi-Sheng |
description | Xu and Davis [J. Fluid Mech. 161, 1–25 (1985)] examined the stability of long axisymmetric liquid jet subjected to an axial temperature gradient, finding capillary, surface-wave, and hydrodynamic modes. They showed that capillary breakup can be retarded or even suppressed for a small Prandtl number (Pr |
doi_str_mv | 10.1063/5.0166867 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0166867</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2864353158</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-8817aa7212da4321f4d5a10afa95421a739a6f5af870da607ec93909560b01e03</originalsourceid><addsrcrecordid>eNp90EtLAzEUBeAgCtbHwn8QcKUw9SaZPGYppb4ouNF1uJ1JbMo82iRF-u-d0q5dnbP4uBcOIXcMpgyUeJJTYEoZpc_IhIGpCq2UOj90DYVSgl2Sq5TWACAqribkY967-LOnnatX2IfUUT9EmleOhj5lXIY25D0dPG3DdhcaunY50d-QVwcTu6HGTWhbjKO6IRce2-RuT3lNvl_mX7O3YvH5-j57XhQ1NzoXxjCNqDnjDZaCM182Ehmgx0qWnKEWFSov0RsNDSrQrq5EBZVUsATmQFyT--PdTRy2O5eyXQ-72I8vLTeqFFIwaUb1cFR1HFKKzttNDB3GvWVgD1NZaU9TjfbxaFMdMuYw9P_gP7_yaAI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2864353158</pqid></control><display><type>article</type><title>Energy mechanism for the instability of liquid jets with thermocapillarity</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP Digital Archive</source><creator>Sun, Yu-Wen ; Hu, Kai-Xin ; Chen, Qi-Sheng</creator><creatorcontrib>Sun, Yu-Wen ; Hu, Kai-Xin ; Chen, Qi-Sheng</creatorcontrib><description>Xu and Davis [J. Fluid Mech. 161, 1–25 (1985)] examined the stability of long axisymmetric liquid jet subjected to an axial temperature gradient, finding capillary, surface-wave, and hydrodynamic modes. They showed that capillary breakup can be retarded or even suppressed for a small Prandtl number (Pr < 1) and a large Biot number (Bi ≥ 1). In the present work, the energy mechanism is carried out for these three kinds of flow instabilities, and the mechanism of suppressing capillary breakup is clarified. When the Reynolds number (RB) is not large, the work done by the pressure on the free surface (PS) is the main energy source of the capillary instability. At small Pr and large Bi, the phase difference between the radial velocity and surface deformation increases with RB, leading to the decrease in PS, which prevents the occurrence of capillary breakup. Meanwhile, the work done by thermocapillary force becomes the main energy source, making hydrodynamic modes unstable. The perturbation flow fields are displayed, which shows that the temperature fluctuations of three modes differ from each other.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0166867</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Biot number ; Breakup ; Capillary waves ; Energy sources ; Fluid dynamics ; Fluid flow ; Free surfaces ; Perturbation ; Physics ; Prandtl number ; Radial velocity ; Reynolds number ; Thermocapillary force</subject><ispartof>Physics of fluids (1994), 2023-09, Vol.35 (9)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-8817aa7212da4321f4d5a10afa95421a739a6f5af870da607ec93909560b01e03</cites><orcidid>0000-0001-7877-3386 ; 0009-0009-4995-0983</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1559,27924,27925</link.rule.ids></links><search><creatorcontrib>Sun, Yu-Wen</creatorcontrib><creatorcontrib>Hu, Kai-Xin</creatorcontrib><creatorcontrib>Chen, Qi-Sheng</creatorcontrib><title>Energy mechanism for the instability of liquid jets with thermocapillarity</title><title>Physics of fluids (1994)</title><description>Xu and Davis [J. Fluid Mech. 161, 1–25 (1985)] examined the stability of long axisymmetric liquid jet subjected to an axial temperature gradient, finding capillary, surface-wave, and hydrodynamic modes. They showed that capillary breakup can be retarded or even suppressed for a small Prandtl number (Pr < 1) and a large Biot number (Bi ≥ 1). In the present work, the energy mechanism is carried out for these three kinds of flow instabilities, and the mechanism of suppressing capillary breakup is clarified. When the Reynolds number (RB) is not large, the work done by the pressure on the free surface (PS) is the main energy source of the capillary instability. At small Pr and large Bi, the phase difference between the radial velocity and surface deformation increases with RB, leading to the decrease in PS, which prevents the occurrence of capillary breakup. Meanwhile, the work done by thermocapillary force becomes the main energy source, making hydrodynamic modes unstable. The perturbation flow fields are displayed, which shows that the temperature fluctuations of three modes differ from each other.</description><subject>Biot number</subject><subject>Breakup</subject><subject>Capillary waves</subject><subject>Energy sources</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Free surfaces</subject><subject>Perturbation</subject><subject>Physics</subject><subject>Prandtl number</subject><subject>Radial velocity</subject><subject>Reynolds number</subject><subject>Thermocapillary force</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp90EtLAzEUBeAgCtbHwn8QcKUw9SaZPGYppb4ouNF1uJ1JbMo82iRF-u-d0q5dnbP4uBcOIXcMpgyUeJJTYEoZpc_IhIGpCq2UOj90DYVSgl2Sq5TWACAqribkY967-LOnnatX2IfUUT9EmleOhj5lXIY25D0dPG3DdhcaunY50d-QVwcTu6HGTWhbjKO6IRce2-RuT3lNvl_mX7O3YvH5-j57XhQ1NzoXxjCNqDnjDZaCM182Ehmgx0qWnKEWFSov0RsNDSrQrq5EBZVUsATmQFyT--PdTRy2O5eyXQ-72I8vLTeqFFIwaUb1cFR1HFKKzttNDB3GvWVgD1NZaU9TjfbxaFMdMuYw9P_gP7_yaAI</recordid><startdate>202309</startdate><enddate>202309</enddate><creator>Sun, Yu-Wen</creator><creator>Hu, Kai-Xin</creator><creator>Chen, Qi-Sheng</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7877-3386</orcidid><orcidid>https://orcid.org/0009-0009-4995-0983</orcidid></search><sort><creationdate>202309</creationdate><title>Energy mechanism for the instability of liquid jets with thermocapillarity</title><author>Sun, Yu-Wen ; Hu, Kai-Xin ; Chen, Qi-Sheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-8817aa7212da4321f4d5a10afa95421a739a6f5af870da607ec93909560b01e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biot number</topic><topic>Breakup</topic><topic>Capillary waves</topic><topic>Energy sources</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Free surfaces</topic><topic>Perturbation</topic><topic>Physics</topic><topic>Prandtl number</topic><topic>Radial velocity</topic><topic>Reynolds number</topic><topic>Thermocapillary force</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Yu-Wen</creatorcontrib><creatorcontrib>Hu, Kai-Xin</creatorcontrib><creatorcontrib>Chen, Qi-Sheng</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Yu-Wen</au><au>Hu, Kai-Xin</au><au>Chen, Qi-Sheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy mechanism for the instability of liquid jets with thermocapillarity</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2023-09</date><risdate>2023</risdate><volume>35</volume><issue>9</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>Xu and Davis [J. Fluid Mech. 161, 1–25 (1985)] examined the stability of long axisymmetric liquid jet subjected to an axial temperature gradient, finding capillary, surface-wave, and hydrodynamic modes. They showed that capillary breakup can be retarded or even suppressed for a small Prandtl number (Pr < 1) and a large Biot number (Bi ≥ 1). In the present work, the energy mechanism is carried out for these three kinds of flow instabilities, and the mechanism of suppressing capillary breakup is clarified. When the Reynolds number (RB) is not large, the work done by the pressure on the free surface (PS) is the main energy source of the capillary instability. At small Pr and large Bi, the phase difference between the radial velocity and surface deformation increases with RB, leading to the decrease in PS, which prevents the occurrence of capillary breakup. Meanwhile, the work done by thermocapillary force becomes the main energy source, making hydrodynamic modes unstable. The perturbation flow fields are displayed, which shows that the temperature fluctuations of three modes differ from each other.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0166867</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7877-3386</orcidid><orcidid>https://orcid.org/0009-0009-4995-0983</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-6631 |
ispartof | Physics of fluids (1994), 2023-09, Vol.35 (9) |
issn | 1070-6631 1089-7666 |
language | eng |
recordid | cdi_crossref_primary_10_1063_5_0166867 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP Digital Archive |
subjects | Biot number Breakup Capillary waves Energy sources Fluid dynamics Fluid flow Free surfaces Perturbation Physics Prandtl number Radial velocity Reynolds number Thermocapillary force |
title | Energy mechanism for the instability of liquid jets with thermocapillarity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A04%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy%20mechanism%20for%20the%20instability%20of%20liquid%20jets%20with%20thermocapillarity&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Sun,%20Yu-Wen&rft.date=2023-09&rft.volume=35&rft.issue=9&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0166867&rft_dat=%3Cproquest_cross%3E2864353158%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c287t-8817aa7212da4321f4d5a10afa95421a739a6f5af870da607ec93909560b01e03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2864353158&rft_id=info:pmid/&rfr_iscdi=true |