Loading…
Low-temperature electron transport of rutile-type Ge x Sn1− x O2
Rutile-type wide and ultrawide band-gap oxide semiconductors are emerging materials for high-power electronics and deep ultraviolet optoelectronics applications. A rutile-type GeO2-SnO2 alloy (r-GexSn1–xO2) recently found is one of such materials. Herein, we report low-temperature electron transport...
Saved in:
Published in: | Journal of applied physics 2023-10, Vol.134 (16) |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Rutile-type wide and ultrawide band-gap oxide semiconductors are emerging materials for high-power electronics and deep ultraviolet optoelectronics applications. A rutile-type GeO2-SnO2 alloy (r-GexSn1–xO2) recently found is one of such materials. Herein, we report low-temperature electron transport properties of r-GexSn1−xO2 thin films with x = 0.28 and 0.41. Based on resistivity and magnetoresistance measurements, along with the theory of quantum interference, it is suggested that Efros–Shklovskii variable-range hopping, i.e., hopping over the states within the Coulomb gap, is dominant at lower temperatures (T ≤ 10 and 15 K) in both r-Ge0.41Sn0.59O2 and r-Ge0.28Sn0.72O2. The negative and positive magnetoresistances observed at low temperatures are attributable to the quantum interference and field-induced spin alignment, respectively. The magnetoresistance measurements at higher temperatures suggest that both Mott variable–range hopping and thermally activated band conduction occur at T |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/5.0173815 |