Loading…

Derivation of shock front evolution with rarefaction wave and its verification in dusty plasma simulations

The evolution of unsupported shocks is theoretically investigated using the method of characteristics. It is found that the location and the speed of the generated non-uniform shock (NUS) front vary with the propagation time and the initial compression strength. The relationship between the NUS fron...

Full description

Saved in:
Bibliographic Details
Published in:Physics of plasmas 2024-02, Vol.31 (2)
Main Authors: Chen, Xin, Liang, Chen, Lu, Shaoyu, Huang, Dong, Feng, Yan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c287t-37995fbe6af3d2e4399094fa521732d6a8913642120b1343e355b6cdf1d20bc33
container_end_page
container_issue 2
container_start_page
container_title Physics of plasmas
container_volume 31
creator Chen, Xin
Liang, Chen
Lu, Shaoyu
Huang, Dong
Feng, Yan
description The evolution of unsupported shocks is theoretically investigated using the method of characteristics. It is found that the location and the speed of the generated non-uniform shock (NUS) front vary with the propagation time and the initial compression strength. The relationship between the NUS front location and the propagation time is asymptotically parabolic, while the speed of the NUS front decreases gradually with the propagation time. These analytical derivations are verified using computer simulations of unsupported shocks in 2D dusty plasmas performed here. The transition of the NUS front speed found previously [Sun et al., Phys. Plasmas 28, 103703 (2021)] using data fitting with the simulation data is re-investigated and further confirmed with the theoretical derivation of the NUS front in the current investigation.
doi_str_mv 10.1063/5.0185990
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0185990</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2923126265</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-37995fbe6af3d2e4399094fa521732d6a8913642120b1343e355b6cdf1d20bc33</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKsL_0HAlcLUPCaZyVLqEwpuFNyFNJPQ1OmkJpmR_nvTTteu7uWcj3M5F4BrjGYYcXrPZgjXTAh0AiYY1aKoeFWe7vcKFZyXX-fgIsY1QqjkrJ6A9aMJblDJ-Q56C-PK629og-8SNINv-4Px69IKBhWMVXoU1GCg6hroUoRDTrBOjxmug00f0w5uWxU3Cka36duDFS_BmVVtNFfHOQWfz08f89di8f7yNn9YFJrUVSpoJQSzS8OVpQ0xJc1lRGkVI7iipOGqFpjykmCClpiW1FDGllw3FjdZ0ZROwc2Yuw3-pzcxybXvQ5dPSiIIxYQTzjJ1O1I6-BhzNbkNbqPCTmIk96-UTB5fmdm7kY3apUOZf-A_nR90Rw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2923126265</pqid></control><display><type>article</type><title>Derivation of shock front evolution with rarefaction wave and its verification in dusty plasma simulations</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>American Institute of Physics(アメリカ物理学協会)</source><creator>Chen, Xin ; Liang, Chen ; Lu, Shaoyu ; Huang, Dong ; Feng, Yan</creator><creatorcontrib>Chen, Xin ; Liang, Chen ; Lu, Shaoyu ; Huang, Dong ; Feng, Yan</creatorcontrib><description>The evolution of unsupported shocks is theoretically investigated using the method of characteristics. It is found that the location and the speed of the generated non-uniform shock (NUS) front vary with the propagation time and the initial compression strength. The relationship between the NUS front location and the propagation time is asymptotically parabolic, while the speed of the NUS front decreases gradually with the propagation time. These analytical derivations are verified using computer simulations of unsupported shocks in 2D dusty plasmas performed here. The transition of the NUS front speed found previously [Sun et al., Phys. Plasmas 28, 103703 (2021)] using data fitting with the simulation data is re-investigated and further confirmed with the theoretical derivation of the NUS front in the current investigation.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/5.0185990</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Compressive strength ; Derivation ; Dusty plasmas ; Evolution ; Method of characteristics ; Rarefaction ; Simulation</subject><ispartof>Physics of plasmas, 2024-02, Vol.31 (2)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International (CC BY-NC-ND) license (http://creativecommons.org/licenses/by-nc-nd/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-37995fbe6af3d2e4399094fa521732d6a8913642120b1343e355b6cdf1d20bc33</cites><orcidid>0000-0003-1904-5498 ; 0000-0002-0141-0752</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/5.0185990$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>314,777,779,781,792,27905,27906,76132</link.rule.ids></links><search><creatorcontrib>Chen, Xin</creatorcontrib><creatorcontrib>Liang, Chen</creatorcontrib><creatorcontrib>Lu, Shaoyu</creatorcontrib><creatorcontrib>Huang, Dong</creatorcontrib><creatorcontrib>Feng, Yan</creatorcontrib><title>Derivation of shock front evolution with rarefaction wave and its verification in dusty plasma simulations</title><title>Physics of plasmas</title><description>The evolution of unsupported shocks is theoretically investigated using the method of characteristics. It is found that the location and the speed of the generated non-uniform shock (NUS) front vary with the propagation time and the initial compression strength. The relationship between the NUS front location and the propagation time is asymptotically parabolic, while the speed of the NUS front decreases gradually with the propagation time. These analytical derivations are verified using computer simulations of unsupported shocks in 2D dusty plasmas performed here. The transition of the NUS front speed found previously [Sun et al., Phys. Plasmas 28, 103703 (2021)] using data fitting with the simulation data is re-investigated and further confirmed with the theoretical derivation of the NUS front in the current investigation.</description><subject>Compressive strength</subject><subject>Derivation</subject><subject>Dusty plasmas</subject><subject>Evolution</subject><subject>Method of characteristics</subject><subject>Rarefaction</subject><subject>Simulation</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>AJDQP</sourceid><recordid>eNp9kEtLAzEUhYMoWKsL_0HAlcLUPCaZyVLqEwpuFNyFNJPQ1OmkJpmR_nvTTteu7uWcj3M5F4BrjGYYcXrPZgjXTAh0AiYY1aKoeFWe7vcKFZyXX-fgIsY1QqjkrJ6A9aMJblDJ-Q56C-PK629og-8SNINv-4Px69IKBhWMVXoU1GCg6hroUoRDTrBOjxmug00f0w5uWxU3Cka36duDFS_BmVVtNFfHOQWfz08f89di8f7yNn9YFJrUVSpoJQSzS8OVpQ0xJc1lRGkVI7iipOGqFpjykmCClpiW1FDGllw3FjdZ0ZROwc2Yuw3-pzcxybXvQ5dPSiIIxYQTzjJ1O1I6-BhzNbkNbqPCTmIk96-UTB5fmdm7kY3apUOZf-A_nR90Rw</recordid><startdate>202402</startdate><enddate>202402</enddate><creator>Chen, Xin</creator><creator>Liang, Chen</creator><creator>Lu, Shaoyu</creator><creator>Huang, Dong</creator><creator>Feng, Yan</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1904-5498</orcidid><orcidid>https://orcid.org/0000-0002-0141-0752</orcidid></search><sort><creationdate>202402</creationdate><title>Derivation of shock front evolution with rarefaction wave and its verification in dusty plasma simulations</title><author>Chen, Xin ; Liang, Chen ; Lu, Shaoyu ; Huang, Dong ; Feng, Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-37995fbe6af3d2e4399094fa521732d6a8913642120b1343e355b6cdf1d20bc33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Compressive strength</topic><topic>Derivation</topic><topic>Dusty plasmas</topic><topic>Evolution</topic><topic>Method of characteristics</topic><topic>Rarefaction</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Xin</creatorcontrib><creatorcontrib>Liang, Chen</creatorcontrib><creatorcontrib>Lu, Shaoyu</creatorcontrib><creatorcontrib>Huang, Dong</creatorcontrib><creatorcontrib>Feng, Yan</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Xin</au><au>Liang, Chen</au><au>Lu, Shaoyu</au><au>Huang, Dong</au><au>Feng, Yan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Derivation of shock front evolution with rarefaction wave and its verification in dusty plasma simulations</atitle><jtitle>Physics of plasmas</jtitle><date>2024-02</date><risdate>2024</risdate><volume>31</volume><issue>2</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>The evolution of unsupported shocks is theoretically investigated using the method of characteristics. It is found that the location and the speed of the generated non-uniform shock (NUS) front vary with the propagation time and the initial compression strength. The relationship between the NUS front location and the propagation time is asymptotically parabolic, while the speed of the NUS front decreases gradually with the propagation time. These analytical derivations are verified using computer simulations of unsupported shocks in 2D dusty plasmas performed here. The transition of the NUS front speed found previously [Sun et al., Phys. Plasmas 28, 103703 (2021)] using data fitting with the simulation data is re-investigated and further confirmed with the theoretical derivation of the NUS front in the current investigation.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0185990</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1904-5498</orcidid><orcidid>https://orcid.org/0000-0002-0141-0752</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-664X
ispartof Physics of plasmas, 2024-02, Vol.31 (2)
issn 1070-664X
1089-7674
language eng
recordid cdi_crossref_primary_10_1063_5_0185990
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); American Institute of Physics(アメリカ物理学協会)
subjects Compressive strength
Derivation
Dusty plasmas
Evolution
Method of characteristics
Rarefaction
Simulation
title Derivation of shock front evolution with rarefaction wave and its verification in dusty plasma simulations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A53%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Derivation%20of%20shock%20front%20evolution%20with%20rarefaction%20wave%20and%20its%20verification%20in%20dusty%20plasma%20simulations&rft.jtitle=Physics%20of%20plasmas&rft.au=Chen,%20Xin&rft.date=2024-02&rft.volume=31&rft.issue=2&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/5.0185990&rft_dat=%3Cproquest_cross%3E2923126265%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c287t-37995fbe6af3d2e4399094fa521732d6a8913642120b1343e355b6cdf1d20bc33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2923126265&rft_id=info:pmid/&rfr_iscdi=true