Loading…

Study on the film thickness and surface wave velocity of the thin liquid film formed by a round jet obliquely impinging on a horizontal plate

For a thin liquid film (in a supercritical flow) prior to the formation of a non-circular hydraulic jump formed by a round jet obliquely impinging on a horizontal plate, the time-averaged film thickness and the surface wave velocity are extracted based on the measured transient film thickness. On th...

Full description

Saved in:
Bibliographic Details
Published in:Physics of fluids (1994) 2024-04, Vol.36 (4)
Main Authors: Zhang, Hongzhou, Huang, Yong, Yuan, Weiwei, Wang, Donghui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c292t-dd1f2995cdc34aa5b4233c7ecd50be5186fd2946d22317c46482ce562aac6e143
cites cdi_FETCH-LOGICAL-c292t-dd1f2995cdc34aa5b4233c7ecd50be5186fd2946d22317c46482ce562aac6e143
container_end_page
container_issue 4
container_start_page
container_title Physics of fluids (1994)
container_volume 36
creator Zhang, Hongzhou
Huang, Yong
Yuan, Weiwei
Wang, Donghui
description For a thin liquid film (in a supercritical flow) prior to the formation of a non-circular hydraulic jump formed by a round jet obliquely impinging on a horizontal plate, the time-averaged film thickness and the surface wave velocity are extracted based on the measured transient film thickness. On the one hand, the effect of many factors, including the jet velocity, impingement angle, azimuthal angle, liquid viscosity, and surface tension, on the time-averaged film thickness and surface wave velocity are discussed. When the jet Reynolds number increases to about 1.4 × 10 4, the film thickness profile suddenly increases, and the transition of liquid flow from laminar to turbulent occurs. Meanwhile, a rapid increase is observed downstream of the turbulent film thickness profile. The influence of surface tension on the time-averaged film thickness and surface wave velocity is negligible for thin liquid films before non-circular hydraulic jumps. Nonetheless, the surface tension has a significant influence on the interface profile of non-circular hydraulic jumps. Furthermore, a “crescent” kink region upstream of the jump can be identified when the surface tension is lower than 40.6 mN/m. On the other hand, experimental results are used to verify the prediction accuracy of existing approximate solutions. The laminar approximate solution with a quadratic boundary layer velocity profile can accurately predict the film thickness distribution of most laminar thin liquid films, except downstream of the thin liquid films with a dynamic viscosity higher than 9.71 mPa s. The surface wave velocities are found to be close to the predicted surface velocities of the approximate solutions.
doi_str_mv 10.1063/5.0199996
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0199996</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3038923422</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-dd1f2995cdc34aa5b4233c7ecd50be5186fd2946d22317c46482ce562aac6e143</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOI4ufIOAK4WOubRpu5TBGwy4UNclzcXJ2DY1SZX6Dr6zqZ21hwPnLL7__IcfgHOMVhgxep2tEC5jsQOwwKgok5wxdjjtOUoYo_gYnHi_QwjRkrAF-HkOgxyh7WDYKqhN08bFiPdOeQ95J6EfnOZCwS_-qeCnaqwwIfL6j49oBxvzMRg5a7V1rZKwHiGHzg5Rv1MB2npiVDNC0_ame4s9OXK4tc582y7wBvYND-oUHGneeHW2n0vwenf7sn5INk_3j-ubTSJISUIiJdakLDMhBU05z-qUUCpyJWSGapXhgmlJypRJQijORcrSggiVMcK5YAqndAku5ru9s_ExH6qdHVwXLSuKaFESmkbpElzOlHDWe6d01TvTcjdWGFVT2lVW7dOO7NXM-pgPD8Z2_8C_McuA7Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3038923422</pqid></control><display><type>article</type><title>Study on the film thickness and surface wave velocity of the thin liquid film formed by a round jet obliquely impinging on a horizontal plate</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP Digital Archive</source><creator>Zhang, Hongzhou ; Huang, Yong ; Yuan, Weiwei ; Wang, Donghui</creator><creatorcontrib>Zhang, Hongzhou ; Huang, Yong ; Yuan, Weiwei ; Wang, Donghui</creatorcontrib><description>For a thin liquid film (in a supercritical flow) prior to the formation of a non-circular hydraulic jump formed by a round jet obliquely impinging on a horizontal plate, the time-averaged film thickness and the surface wave velocity are extracted based on the measured transient film thickness. On the one hand, the effect of many factors, including the jet velocity, impingement angle, azimuthal angle, liquid viscosity, and surface tension, on the time-averaged film thickness and surface wave velocity are discussed. When the jet Reynolds number increases to about 1.4 × 10 4, the film thickness profile suddenly increases, and the transition of liquid flow from laminar to turbulent occurs. Meanwhile, a rapid increase is observed downstream of the turbulent film thickness profile. The influence of surface tension on the time-averaged film thickness and surface wave velocity is negligible for thin liquid films before non-circular hydraulic jumps. Nonetheless, the surface tension has a significant influence on the interface profile of non-circular hydraulic jumps. Furthermore, a “crescent” kink region upstream of the jump can be identified when the surface tension is lower than 40.6 mN/m. On the other hand, experimental results are used to verify the prediction accuracy of existing approximate solutions. The laminar approximate solution with a quadratic boundary layer velocity profile can accurately predict the film thickness distribution of most laminar thin liquid films, except downstream of the thin liquid films with a dynamic viscosity higher than 9.71 mPa s. The surface wave velocities are found to be close to the predicted surface velocities of the approximate solutions.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0199996</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Boundary layers ; Film thickness ; Fluid flow ; Hydraulic jump ; Hydraulics ; Laminar flow ; Liquid flow ; Reynolds number ; Supercritical flow ; Surface tension ; Surface waves ; Thin films ; Turbulent flow ; Velocity ; Velocity distribution ; Viscosity ; Wave velocity</subject><ispartof>Physics of fluids (1994), 2024-04, Vol.36 (4)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-dd1f2995cdc34aa5b4233c7ecd50be5186fd2946d22317c46482ce562aac6e143</citedby><cites>FETCH-LOGICAL-c292t-dd1f2995cdc34aa5b4233c7ecd50be5186fd2946d22317c46482ce562aac6e143</cites><orcidid>0000-0002-0775-5479 ; 0000-0002-3493-3357 ; 0000-0001-5055-4974 ; 0000-0002-3770-0559</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1559,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhang, Hongzhou</creatorcontrib><creatorcontrib>Huang, Yong</creatorcontrib><creatorcontrib>Yuan, Weiwei</creatorcontrib><creatorcontrib>Wang, Donghui</creatorcontrib><title>Study on the film thickness and surface wave velocity of the thin liquid film formed by a round jet obliquely impinging on a horizontal plate</title><title>Physics of fluids (1994)</title><description>For a thin liquid film (in a supercritical flow) prior to the formation of a non-circular hydraulic jump formed by a round jet obliquely impinging on a horizontal plate, the time-averaged film thickness and the surface wave velocity are extracted based on the measured transient film thickness. On the one hand, the effect of many factors, including the jet velocity, impingement angle, azimuthal angle, liquid viscosity, and surface tension, on the time-averaged film thickness and surface wave velocity are discussed. When the jet Reynolds number increases to about 1.4 × 10 4, the film thickness profile suddenly increases, and the transition of liquid flow from laminar to turbulent occurs. Meanwhile, a rapid increase is observed downstream of the turbulent film thickness profile. The influence of surface tension on the time-averaged film thickness and surface wave velocity is negligible for thin liquid films before non-circular hydraulic jumps. Nonetheless, the surface tension has a significant influence on the interface profile of non-circular hydraulic jumps. Furthermore, a “crescent” kink region upstream of the jump can be identified when the surface tension is lower than 40.6 mN/m. On the other hand, experimental results are used to verify the prediction accuracy of existing approximate solutions. The laminar approximate solution with a quadratic boundary layer velocity profile can accurately predict the film thickness distribution of most laminar thin liquid films, except downstream of the thin liquid films with a dynamic viscosity higher than 9.71 mPa s. The surface wave velocities are found to be close to the predicted surface velocities of the approximate solutions.</description><subject>Boundary layers</subject><subject>Film thickness</subject><subject>Fluid flow</subject><subject>Hydraulic jump</subject><subject>Hydraulics</subject><subject>Laminar flow</subject><subject>Liquid flow</subject><subject>Reynolds number</subject><subject>Supercritical flow</subject><subject>Surface tension</subject><subject>Surface waves</subject><subject>Thin films</subject><subject>Turbulent flow</subject><subject>Velocity</subject><subject>Velocity distribution</subject><subject>Viscosity</subject><subject>Wave velocity</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMoOI4ufIOAK4WOubRpu5TBGwy4UNclzcXJ2DY1SZX6Dr6zqZ21hwPnLL7__IcfgHOMVhgxep2tEC5jsQOwwKgok5wxdjjtOUoYo_gYnHi_QwjRkrAF-HkOgxyh7WDYKqhN08bFiPdOeQ95J6EfnOZCwS_-qeCnaqwwIfL6j49oBxvzMRg5a7V1rZKwHiGHzg5Rv1MB2npiVDNC0_ame4s9OXK4tc582y7wBvYND-oUHGneeHW2n0vwenf7sn5INk_3j-ubTSJISUIiJdakLDMhBU05z-qUUCpyJWSGapXhgmlJypRJQijORcrSggiVMcK5YAqndAku5ru9s_ExH6qdHVwXLSuKaFESmkbpElzOlHDWe6d01TvTcjdWGFVT2lVW7dOO7NXM-pgPD8Z2_8C_McuA7Q</recordid><startdate>202404</startdate><enddate>202404</enddate><creator>Zhang, Hongzhou</creator><creator>Huang, Yong</creator><creator>Yuan, Weiwei</creator><creator>Wang, Donghui</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0775-5479</orcidid><orcidid>https://orcid.org/0000-0002-3493-3357</orcidid><orcidid>https://orcid.org/0000-0001-5055-4974</orcidid><orcidid>https://orcid.org/0000-0002-3770-0559</orcidid></search><sort><creationdate>202404</creationdate><title>Study on the film thickness and surface wave velocity of the thin liquid film formed by a round jet obliquely impinging on a horizontal plate</title><author>Zhang, Hongzhou ; Huang, Yong ; Yuan, Weiwei ; Wang, Donghui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-dd1f2995cdc34aa5b4233c7ecd50be5186fd2946d22317c46482ce562aac6e143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Boundary layers</topic><topic>Film thickness</topic><topic>Fluid flow</topic><topic>Hydraulic jump</topic><topic>Hydraulics</topic><topic>Laminar flow</topic><topic>Liquid flow</topic><topic>Reynolds number</topic><topic>Supercritical flow</topic><topic>Surface tension</topic><topic>Surface waves</topic><topic>Thin films</topic><topic>Turbulent flow</topic><topic>Velocity</topic><topic>Velocity distribution</topic><topic>Viscosity</topic><topic>Wave velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Hongzhou</creatorcontrib><creatorcontrib>Huang, Yong</creatorcontrib><creatorcontrib>Yuan, Weiwei</creatorcontrib><creatorcontrib>Wang, Donghui</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Hongzhou</au><au>Huang, Yong</au><au>Yuan, Weiwei</au><au>Wang, Donghui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study on the film thickness and surface wave velocity of the thin liquid film formed by a round jet obliquely impinging on a horizontal plate</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2024-04</date><risdate>2024</risdate><volume>36</volume><issue>4</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>For a thin liquid film (in a supercritical flow) prior to the formation of a non-circular hydraulic jump formed by a round jet obliquely impinging on a horizontal plate, the time-averaged film thickness and the surface wave velocity are extracted based on the measured transient film thickness. On the one hand, the effect of many factors, including the jet velocity, impingement angle, azimuthal angle, liquid viscosity, and surface tension, on the time-averaged film thickness and surface wave velocity are discussed. When the jet Reynolds number increases to about 1.4 × 10 4, the film thickness profile suddenly increases, and the transition of liquid flow from laminar to turbulent occurs. Meanwhile, a rapid increase is observed downstream of the turbulent film thickness profile. The influence of surface tension on the time-averaged film thickness and surface wave velocity is negligible for thin liquid films before non-circular hydraulic jumps. Nonetheless, the surface tension has a significant influence on the interface profile of non-circular hydraulic jumps. Furthermore, a “crescent” kink region upstream of the jump can be identified when the surface tension is lower than 40.6 mN/m. On the other hand, experimental results are used to verify the prediction accuracy of existing approximate solutions. The laminar approximate solution with a quadratic boundary layer velocity profile can accurately predict the film thickness distribution of most laminar thin liquid films, except downstream of the thin liquid films with a dynamic viscosity higher than 9.71 mPa s. The surface wave velocities are found to be close to the predicted surface velocities of the approximate solutions.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0199996</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-0775-5479</orcidid><orcidid>https://orcid.org/0000-0002-3493-3357</orcidid><orcidid>https://orcid.org/0000-0001-5055-4974</orcidid><orcidid>https://orcid.org/0000-0002-3770-0559</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2024-04, Vol.36 (4)
issn 1070-6631
1089-7666
language eng
recordid cdi_crossref_primary_10_1063_5_0199996
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP Digital Archive
subjects Boundary layers
Film thickness
Fluid flow
Hydraulic jump
Hydraulics
Laminar flow
Liquid flow
Reynolds number
Supercritical flow
Surface tension
Surface waves
Thin films
Turbulent flow
Velocity
Velocity distribution
Viscosity
Wave velocity
title Study on the film thickness and surface wave velocity of the thin liquid film formed by a round jet obliquely impinging on a horizontal plate
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T14%3A28%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20on%20the%20film%20thickness%20and%20surface%20wave%20velocity%20of%20the%20thin%20liquid%20film%20formed%20by%20a%20round%20jet%20obliquely%20impinging%20on%20a%20horizontal%20plate&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Zhang,%20Hongzhou&rft.date=2024-04&rft.volume=36&rft.issue=4&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0199996&rft_dat=%3Cproquest_cross%3E3038923422%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c292t-dd1f2995cdc34aa5b4233c7ecd50be5186fd2946d22317c46482ce562aac6e143%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3038923422&rft_id=info:pmid/&rfr_iscdi=true