Loading…

Voltage-controlled magnetic anisotropy-based spintronic devices for magnetic memory applications: Challenges and perspectives

Electronic spins provide an additional degree of freedom that can be used in modern spin-based electronic devices. Some benefits of spintronic devices include nonvolatility, energy efficiency, high endurance, and CMOS compatibility, which can be leveraged for data processing and storage applications...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Applied Physics 2024-06, Vol.135 (22)
Main Authors: Mishra, Pinkesh Kumar, Sravani, Meenakshi, Bose, Arnab, Bhuktare, Swapnil
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c287t-c4f7e3e63d94b7f635bc1e60834c338fee1bda1a37a399098648d0e2cacbd7273
container_end_page
container_issue 22
container_start_page
container_title Journal of Applied Physics
container_volume 135
creator Mishra, Pinkesh Kumar
Sravani, Meenakshi
Bose, Arnab
Bhuktare, Swapnil
description Electronic spins provide an additional degree of freedom that can be used in modern spin-based electronic devices. Some benefits of spintronic devices include nonvolatility, energy efficiency, high endurance, and CMOS compatibility, which can be leveraged for data processing and storage applications in today's digital era. To implement such functionalities, controlling and manipulating electron spins is of prime interest. One of the efficient ways of achieving this in spintronics is to use the electric field to control electron spin or magnetism through the voltage-controlled magnetic anisotropy (VCMA) effect. VCMA avoids the movement of charges and significantly reduces the Ohmic loss. This article reviews VCMA-based spintronic devices for magnetic memory applications. First, we briefly discuss the VCMA effect and various mechanisms explaining its physical origin. We then mention various challenges in VCMA that impede it for practical VCMA-based magnetic memory. We review various techniques to address them, such as field-free switching operation, write error rate improvement, widening the operation window, enhancing the VCMA coefficient, and ensuring fast-read operation with low read disturbance. Finally, we draw conclusions outlining the future perspectives.
doi_str_mv 10.1063/5.0201648
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0201648</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3068197255</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-c4f7e3e63d94b7f635bc1e60834c338fee1bda1a37a399098648d0e2cacbd7273</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKsHv8GCJ4WtyWZ3k3iT4j8oeFGvSzY7W1N2k5ikhR787qa24M3TwLzfvOE9hC4JnhFc09tqhgtM6pIfoQnBXOSsqvAxmmBckJwLJk7RWQgrjAnhVEzQ94cdolxCrqyJ3g4DdNkolwaiVpk0Oti0ddu8lSEpwekdZZLWwUYrCFlv_d_BCKP120w6N2glo7Ym3GXzT5lszTLB0nSZAx8cqKg3EM7RSS-HABeHOUXvjw9v8-d88fr0Mr9f5KrgLOaq7BlQqGknypb1Na1aRaDGnJaKUt4DkLaTRFImqRBY8JS_w1AoqdqOFYxO0dXe13n7tYYQm5Vde5NeNhTXnAhWVFWirveU8jYED33jvB6l3zYEN7t2m6o5tJvYmz0blI6_Sf-BfwBa4Hzy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3068197255</pqid></control><display><type>article</type><title>Voltage-controlled magnetic anisotropy-based spintronic devices for magnetic memory applications: Challenges and perspectives</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Mishra, Pinkesh Kumar ; Sravani, Meenakshi ; Bose, Arnab ; Bhuktare, Swapnil</creator><creatorcontrib>Mishra, Pinkesh Kumar ; Sravani, Meenakshi ; Bose, Arnab ; Bhuktare, Swapnil</creatorcontrib><description>Electronic spins provide an additional degree of freedom that can be used in modern spin-based electronic devices. Some benefits of spintronic devices include nonvolatility, energy efficiency, high endurance, and CMOS compatibility, which can be leveraged for data processing and storage applications in today's digital era. To implement such functionalities, controlling and manipulating electron spins is of prime interest. One of the efficient ways of achieving this in spintronics is to use the electric field to control electron spin or magnetism through the voltage-controlled magnetic anisotropy (VCMA) effect. VCMA avoids the movement of charges and significantly reduces the Ohmic loss. This article reviews VCMA-based spintronic devices for magnetic memory applications. First, we briefly discuss the VCMA effect and various mechanisms explaining its physical origin. We then mention various challenges in VCMA that impede it for practical VCMA-based magnetic memory. We review various techniques to address them, such as field-free switching operation, write error rate improvement, widening the operation window, enhancing the VCMA coefficient, and ensuring fast-read operation with low read disturbance. Finally, we draw conclusions outlining the future perspectives.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0201648</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Data processing ; Electric fields ; Electric potential ; Electron spin ; Magnetic anisotropy ; Memory devices ; Spintronics ; Voltage</subject><ispartof>Journal of Applied Physics, 2024-06, Vol.135 (22)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-c4f7e3e63d94b7f635bc1e60834c338fee1bda1a37a399098648d0e2cacbd7273</cites><orcidid>0000-0003-4696-3112 ; 0000-0003-2073-2762 ; 0000-0003-0546-3592 ; 0000-0002-2026-1131</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>313,314,777,781,789,27903,27905,27906</link.rule.ids></links><search><creatorcontrib>Mishra, Pinkesh Kumar</creatorcontrib><creatorcontrib>Sravani, Meenakshi</creatorcontrib><creatorcontrib>Bose, Arnab</creatorcontrib><creatorcontrib>Bhuktare, Swapnil</creatorcontrib><title>Voltage-controlled magnetic anisotropy-based spintronic devices for magnetic memory applications: Challenges and perspectives</title><title>Journal of Applied Physics</title><description>Electronic spins provide an additional degree of freedom that can be used in modern spin-based electronic devices. Some benefits of spintronic devices include nonvolatility, energy efficiency, high endurance, and CMOS compatibility, which can be leveraged for data processing and storage applications in today's digital era. To implement such functionalities, controlling and manipulating electron spins is of prime interest. One of the efficient ways of achieving this in spintronics is to use the electric field to control electron spin or magnetism through the voltage-controlled magnetic anisotropy (VCMA) effect. VCMA avoids the movement of charges and significantly reduces the Ohmic loss. This article reviews VCMA-based spintronic devices for magnetic memory applications. First, we briefly discuss the VCMA effect and various mechanisms explaining its physical origin. We then mention various challenges in VCMA that impede it for practical VCMA-based magnetic memory. We review various techniques to address them, such as field-free switching operation, write error rate improvement, widening the operation window, enhancing the VCMA coefficient, and ensuring fast-read operation with low read disturbance. Finally, we draw conclusions outlining the future perspectives.</description><subject>Data processing</subject><subject>Electric fields</subject><subject>Electric potential</subject><subject>Electron spin</subject><subject>Magnetic anisotropy</subject><subject>Memory devices</subject><subject>Spintronics</subject><subject>Voltage</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>AJDQP</sourceid><recordid>eNp9kE9LAzEQxYMoWKsHv8GCJ4WtyWZ3k3iT4j8oeFGvSzY7W1N2k5ikhR787qa24M3TwLzfvOE9hC4JnhFc09tqhgtM6pIfoQnBXOSsqvAxmmBckJwLJk7RWQgrjAnhVEzQ94cdolxCrqyJ3g4DdNkolwaiVpk0Oti0ddu8lSEpwekdZZLWwUYrCFlv_d_BCKP120w6N2glo7Ym3GXzT5lszTLB0nSZAx8cqKg3EM7RSS-HABeHOUXvjw9v8-d88fr0Mr9f5KrgLOaq7BlQqGknypb1Na1aRaDGnJaKUt4DkLaTRFImqRBY8JS_w1AoqdqOFYxO0dXe13n7tYYQm5Vde5NeNhTXnAhWVFWirveU8jYED33jvB6l3zYEN7t2m6o5tJvYmz0blI6_Sf-BfwBa4Hzy</recordid><startdate>20240614</startdate><enddate>20240614</enddate><creator>Mishra, Pinkesh Kumar</creator><creator>Sravani, Meenakshi</creator><creator>Bose, Arnab</creator><creator>Bhuktare, Swapnil</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4696-3112</orcidid><orcidid>https://orcid.org/0000-0003-2073-2762</orcidid><orcidid>https://orcid.org/0000-0003-0546-3592</orcidid><orcidid>https://orcid.org/0000-0002-2026-1131</orcidid></search><sort><creationdate>20240614</creationdate><title>Voltage-controlled magnetic anisotropy-based spintronic devices for magnetic memory applications: Challenges and perspectives</title><author>Mishra, Pinkesh Kumar ; Sravani, Meenakshi ; Bose, Arnab ; Bhuktare, Swapnil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-c4f7e3e63d94b7f635bc1e60834c338fee1bda1a37a399098648d0e2cacbd7273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Data processing</topic><topic>Electric fields</topic><topic>Electric potential</topic><topic>Electron spin</topic><topic>Magnetic anisotropy</topic><topic>Memory devices</topic><topic>Spintronics</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mishra, Pinkesh Kumar</creatorcontrib><creatorcontrib>Sravani, Meenakshi</creatorcontrib><creatorcontrib>Bose, Arnab</creatorcontrib><creatorcontrib>Bhuktare, Swapnil</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of Applied Physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mishra, Pinkesh Kumar</au><au>Sravani, Meenakshi</au><au>Bose, Arnab</au><au>Bhuktare, Swapnil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Voltage-controlled magnetic anisotropy-based spintronic devices for magnetic memory applications: Challenges and perspectives</atitle><jtitle>Journal of Applied Physics</jtitle><date>2024-06-14</date><risdate>2024</risdate><volume>135</volume><issue>22</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Electronic spins provide an additional degree of freedom that can be used in modern spin-based electronic devices. Some benefits of spintronic devices include nonvolatility, energy efficiency, high endurance, and CMOS compatibility, which can be leveraged for data processing and storage applications in today's digital era. To implement such functionalities, controlling and manipulating electron spins is of prime interest. One of the efficient ways of achieving this in spintronics is to use the electric field to control electron spin or magnetism through the voltage-controlled magnetic anisotropy (VCMA) effect. VCMA avoids the movement of charges and significantly reduces the Ohmic loss. This article reviews VCMA-based spintronic devices for magnetic memory applications. First, we briefly discuss the VCMA effect and various mechanisms explaining its physical origin. We then mention various challenges in VCMA that impede it for practical VCMA-based magnetic memory. We review various techniques to address them, such as field-free switching operation, write error rate improvement, widening the operation window, enhancing the VCMA coefficient, and ensuring fast-read operation with low read disturbance. Finally, we draw conclusions outlining the future perspectives.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0201648</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0003-4696-3112</orcidid><orcidid>https://orcid.org/0000-0003-2073-2762</orcidid><orcidid>https://orcid.org/0000-0003-0546-3592</orcidid><orcidid>https://orcid.org/0000-0002-2026-1131</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of Applied Physics, 2024-06, Vol.135 (22)
issn 0021-8979
1089-7550
language eng
recordid cdi_crossref_primary_10_1063_5_0201648
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Data processing
Electric fields
Electric potential
Electron spin
Magnetic anisotropy
Memory devices
Spintronics
Voltage
title Voltage-controlled magnetic anisotropy-based spintronic devices for magnetic memory applications: Challenges and perspectives
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A47%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Voltage-controlled%20magnetic%20anisotropy-based%20spintronic%20devices%20for%20magnetic%20memory%20applications:%20Challenges%20and%20perspectives&rft.jtitle=Journal%20of%20Applied%20Physics&rft.au=Mishra,%20Pinkesh%20Kumar&rft.date=2024-06-14&rft.volume=135&rft.issue=22&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0201648&rft_dat=%3Cproquest_cross%3E3068197255%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c287t-c4f7e3e63d94b7f635bc1e60834c338fee1bda1a37a399098648d0e2cacbd7273%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3068197255&rft_id=info:pmid/&rfr_iscdi=true