Loading…
Voltage-controlled magnetic anisotropy-based spintronic devices for magnetic memory applications: Challenges and perspectives
Electronic spins provide an additional degree of freedom that can be used in modern spin-based electronic devices. Some benefits of spintronic devices include nonvolatility, energy efficiency, high endurance, and CMOS compatibility, which can be leveraged for data processing and storage applications...
Saved in:
Published in: | Journal of Applied Physics 2024-06, Vol.135 (22) |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c287t-c4f7e3e63d94b7f635bc1e60834c338fee1bda1a37a399098648d0e2cacbd7273 |
container_end_page | |
container_issue | 22 |
container_start_page | |
container_title | Journal of Applied Physics |
container_volume | 135 |
creator | Mishra, Pinkesh Kumar Sravani, Meenakshi Bose, Arnab Bhuktare, Swapnil |
description | Electronic spins provide an additional degree of freedom that can be used in modern spin-based electronic devices. Some benefits of spintronic devices include nonvolatility, energy efficiency, high endurance, and CMOS compatibility, which can be leveraged for data processing and storage applications in today's digital era. To implement such functionalities, controlling and manipulating electron spins is of prime interest. One of the efficient ways of achieving this in spintronics is to use the electric field to control electron spin or magnetism through the voltage-controlled magnetic anisotropy (VCMA) effect. VCMA avoids the movement of charges and significantly reduces the Ohmic loss. This article reviews VCMA-based spintronic devices for magnetic memory applications. First, we briefly discuss the VCMA effect and various mechanisms explaining its physical origin. We then mention various challenges in VCMA that impede it for practical VCMA-based magnetic memory. We review various techniques to address them, such as field-free switching operation, write error rate improvement, widening the operation window, enhancing the VCMA coefficient, and ensuring fast-read operation with low read disturbance. Finally, we draw conclusions outlining the future perspectives. |
doi_str_mv | 10.1063/5.0201648 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0201648</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3068197255</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-c4f7e3e63d94b7f635bc1e60834c338fee1bda1a37a399098648d0e2cacbd7273</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKsHv8GCJ4WtyWZ3k3iT4j8oeFGvSzY7W1N2k5ikhR787qa24M3TwLzfvOE9hC4JnhFc09tqhgtM6pIfoQnBXOSsqvAxmmBckJwLJk7RWQgrjAnhVEzQ94cdolxCrqyJ3g4DdNkolwaiVpk0Oti0ddu8lSEpwekdZZLWwUYrCFlv_d_BCKP120w6N2glo7Ym3GXzT5lszTLB0nSZAx8cqKg3EM7RSS-HABeHOUXvjw9v8-d88fr0Mr9f5KrgLOaq7BlQqGknypb1Na1aRaDGnJaKUt4DkLaTRFImqRBY8JS_w1AoqdqOFYxO0dXe13n7tYYQm5Vde5NeNhTXnAhWVFWirveU8jYED33jvB6l3zYEN7t2m6o5tJvYmz0blI6_Sf-BfwBa4Hzy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3068197255</pqid></control><display><type>article</type><title>Voltage-controlled magnetic anisotropy-based spintronic devices for magnetic memory applications: Challenges and perspectives</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Mishra, Pinkesh Kumar ; Sravani, Meenakshi ; Bose, Arnab ; Bhuktare, Swapnil</creator><creatorcontrib>Mishra, Pinkesh Kumar ; Sravani, Meenakshi ; Bose, Arnab ; Bhuktare, Swapnil</creatorcontrib><description>Electronic spins provide an additional degree of freedom that can be used in modern spin-based electronic devices. Some benefits of spintronic devices include nonvolatility, energy efficiency, high endurance, and CMOS compatibility, which can be leveraged for data processing and storage applications in today's digital era. To implement such functionalities, controlling and manipulating electron spins is of prime interest. One of the efficient ways of achieving this in spintronics is to use the electric field to control electron spin or magnetism through the voltage-controlled magnetic anisotropy (VCMA) effect. VCMA avoids the movement of charges and significantly reduces the Ohmic loss. This article reviews VCMA-based spintronic devices for magnetic memory applications. First, we briefly discuss the VCMA effect and various mechanisms explaining its physical origin. We then mention various challenges in VCMA that impede it for practical VCMA-based magnetic memory. We review various techniques to address them, such as field-free switching operation, write error rate improvement, widening the operation window, enhancing the VCMA coefficient, and ensuring fast-read operation with low read disturbance. Finally, we draw conclusions outlining the future perspectives.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0201648</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Data processing ; Electric fields ; Electric potential ; Electron spin ; Magnetic anisotropy ; Memory devices ; Spintronics ; Voltage</subject><ispartof>Journal of Applied Physics, 2024-06, Vol.135 (22)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-c4f7e3e63d94b7f635bc1e60834c338fee1bda1a37a399098648d0e2cacbd7273</cites><orcidid>0000-0003-4696-3112 ; 0000-0003-2073-2762 ; 0000-0003-0546-3592 ; 0000-0002-2026-1131</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>313,314,777,781,789,27903,27905,27906</link.rule.ids></links><search><creatorcontrib>Mishra, Pinkesh Kumar</creatorcontrib><creatorcontrib>Sravani, Meenakshi</creatorcontrib><creatorcontrib>Bose, Arnab</creatorcontrib><creatorcontrib>Bhuktare, Swapnil</creatorcontrib><title>Voltage-controlled magnetic anisotropy-based spintronic devices for magnetic memory applications: Challenges and perspectives</title><title>Journal of Applied Physics</title><description>Electronic spins provide an additional degree of freedom that can be used in modern spin-based electronic devices. Some benefits of spintronic devices include nonvolatility, energy efficiency, high endurance, and CMOS compatibility, which can be leveraged for data processing and storage applications in today's digital era. To implement such functionalities, controlling and manipulating electron spins is of prime interest. One of the efficient ways of achieving this in spintronics is to use the electric field to control electron spin or magnetism through the voltage-controlled magnetic anisotropy (VCMA) effect. VCMA avoids the movement of charges and significantly reduces the Ohmic loss. This article reviews VCMA-based spintronic devices for magnetic memory applications. First, we briefly discuss the VCMA effect and various mechanisms explaining its physical origin. We then mention various challenges in VCMA that impede it for practical VCMA-based magnetic memory. We review various techniques to address them, such as field-free switching operation, write error rate improvement, widening the operation window, enhancing the VCMA coefficient, and ensuring fast-read operation with low read disturbance. Finally, we draw conclusions outlining the future perspectives.</description><subject>Data processing</subject><subject>Electric fields</subject><subject>Electric potential</subject><subject>Electron spin</subject><subject>Magnetic anisotropy</subject><subject>Memory devices</subject><subject>Spintronics</subject><subject>Voltage</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>AJDQP</sourceid><recordid>eNp9kE9LAzEQxYMoWKsHv8GCJ4WtyWZ3k3iT4j8oeFGvSzY7W1N2k5ikhR787qa24M3TwLzfvOE9hC4JnhFc09tqhgtM6pIfoQnBXOSsqvAxmmBckJwLJk7RWQgrjAnhVEzQ94cdolxCrqyJ3g4DdNkolwaiVpk0Oti0ddu8lSEpwekdZZLWwUYrCFlv_d_BCKP120w6N2glo7Ym3GXzT5lszTLB0nSZAx8cqKg3EM7RSS-HABeHOUXvjw9v8-d88fr0Mr9f5KrgLOaq7BlQqGknypb1Na1aRaDGnJaKUt4DkLaTRFImqRBY8JS_w1AoqdqOFYxO0dXe13n7tYYQm5Vde5NeNhTXnAhWVFWirveU8jYED33jvB6l3zYEN7t2m6o5tJvYmz0blI6_Sf-BfwBa4Hzy</recordid><startdate>20240614</startdate><enddate>20240614</enddate><creator>Mishra, Pinkesh Kumar</creator><creator>Sravani, Meenakshi</creator><creator>Bose, Arnab</creator><creator>Bhuktare, Swapnil</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4696-3112</orcidid><orcidid>https://orcid.org/0000-0003-2073-2762</orcidid><orcidid>https://orcid.org/0000-0003-0546-3592</orcidid><orcidid>https://orcid.org/0000-0002-2026-1131</orcidid></search><sort><creationdate>20240614</creationdate><title>Voltage-controlled magnetic anisotropy-based spintronic devices for magnetic memory applications: Challenges and perspectives</title><author>Mishra, Pinkesh Kumar ; Sravani, Meenakshi ; Bose, Arnab ; Bhuktare, Swapnil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-c4f7e3e63d94b7f635bc1e60834c338fee1bda1a37a399098648d0e2cacbd7273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Data processing</topic><topic>Electric fields</topic><topic>Electric potential</topic><topic>Electron spin</topic><topic>Magnetic anisotropy</topic><topic>Memory devices</topic><topic>Spintronics</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mishra, Pinkesh Kumar</creatorcontrib><creatorcontrib>Sravani, Meenakshi</creatorcontrib><creatorcontrib>Bose, Arnab</creatorcontrib><creatorcontrib>Bhuktare, Swapnil</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of Applied Physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mishra, Pinkesh Kumar</au><au>Sravani, Meenakshi</au><au>Bose, Arnab</au><au>Bhuktare, Swapnil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Voltage-controlled magnetic anisotropy-based spintronic devices for magnetic memory applications: Challenges and perspectives</atitle><jtitle>Journal of Applied Physics</jtitle><date>2024-06-14</date><risdate>2024</risdate><volume>135</volume><issue>22</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Electronic spins provide an additional degree of freedom that can be used in modern spin-based electronic devices. Some benefits of spintronic devices include nonvolatility, energy efficiency, high endurance, and CMOS compatibility, which can be leveraged for data processing and storage applications in today's digital era. To implement such functionalities, controlling and manipulating electron spins is of prime interest. One of the efficient ways of achieving this in spintronics is to use the electric field to control electron spin or magnetism through the voltage-controlled magnetic anisotropy (VCMA) effect. VCMA avoids the movement of charges and significantly reduces the Ohmic loss. This article reviews VCMA-based spintronic devices for magnetic memory applications. First, we briefly discuss the VCMA effect and various mechanisms explaining its physical origin. We then mention various challenges in VCMA that impede it for practical VCMA-based magnetic memory. We review various techniques to address them, such as field-free switching operation, write error rate improvement, widening the operation window, enhancing the VCMA coefficient, and ensuring fast-read operation with low read disturbance. Finally, we draw conclusions outlining the future perspectives.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0201648</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0003-4696-3112</orcidid><orcidid>https://orcid.org/0000-0003-2073-2762</orcidid><orcidid>https://orcid.org/0000-0003-0546-3592</orcidid><orcidid>https://orcid.org/0000-0002-2026-1131</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of Applied Physics, 2024-06, Vol.135 (22) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_crossref_primary_10_1063_5_0201648 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Data processing Electric fields Electric potential Electron spin Magnetic anisotropy Memory devices Spintronics Voltage |
title | Voltage-controlled magnetic anisotropy-based spintronic devices for magnetic memory applications: Challenges and perspectives |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A47%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Voltage-controlled%20magnetic%20anisotropy-based%20spintronic%20devices%20for%20magnetic%20memory%20applications:%20Challenges%20and%20perspectives&rft.jtitle=Journal%20of%20Applied%20Physics&rft.au=Mishra,%20Pinkesh%20Kumar&rft.date=2024-06-14&rft.volume=135&rft.issue=22&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0201648&rft_dat=%3Cproquest_cross%3E3068197255%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c287t-c4f7e3e63d94b7f635bc1e60834c338fee1bda1a37a399098648d0e2cacbd7273%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3068197255&rft_id=info:pmid/&rfr_iscdi=true |