Loading…

Cost effective synthesis of sulfur and nitrogen co-doped graphene aerogel and application in binder free supercapacitor

Incorporating heteroatoms into graphene lattice results in enhanced electrical conductivity and electrochemically active sites and has significant importance in developing high-performance supercapacitors. In this study, sulfur and nitrogen co-doped graphene aerogel is synthesized via hydrothermal t...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2024-07, Vol.136 (3)
Main Authors: Muhiuddin, Mohammad, Khan, Aliullah Zaifullah, Devi, Naorem Aruna, Bharadishettar, Naveen, Meti, Sunil, Siddique, Abu Bakar, Bhat K., Udaya, Akhtar, Waseem, Rahman, Mohammad Rizwanur
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Incorporating heteroatoms into graphene lattice results in enhanced electrical conductivity and electrochemically active sites and has significant importance in developing high-performance supercapacitors. In this study, sulfur and nitrogen co-doped graphene aerogel is synthesized via hydrothermal technique followed by a simple but effective freeze-thawing and ambient pressure drying process (referred to as SN-GA). The process requires low-cost raw materials and cost-effective equipment without the utilization of any special instrument that operates at ultra-low temperatures, under high pressure, or vacuum environment. Ammonium sulfate [(NH4)2SO4] and ethylenediamine are used as a source of sulfur and nitrogen and as a reducing agent. (NH4)2SO4 with different molarities (0, 12, 24, and 36 mM) are used to synthesize four different aerogel samples marked as GA, SN-GA1, SN-GA2, and SN-GA3. The electrode is prepared using an SN-GA2 sample, exhibiting an outstanding specific capacitance of 244 F g−1 at an applied current density of 1 A g−1 with almost 98.5% Coulomb efficiency. Furthermore, based on the SN-GA2 sample, the symmetrical supercapacitor is fabricated, displaying an energy density of 18.14 Wh kg−1 at a power density of 498.4 W kg−1. Hence, SN-GA2 renders a promising material for supercapacitor applications.
ISSN:0021-8979
1089-7550
DOI:10.1063/5.0202270