Loading…

Defect studies in transition metal dichalcogenide MoSe1.8S0.2 using resonant Raman spectroscopy

Using resonant Raman spectroscopy with 632.8 nm (1.96 eV) laser, we describe the Raman spectra of single crystals of transition metal dichalcogenides with nominal composition MoSe(2−x)Sx for x = 0.2. Changes in Raman spectra at some regions of the sample indicated non-stoichiometry and, in particula...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2024-06, Vol.135 (24)
Main Authors: Tariq, Muneeb, Rao, Rekha, Kesari, Swayam, Rao, Mala N., Deshpande, M. P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c217t-6b21ccf55fba251d117683191e3ca92ffd8d71acb943b16b45a456292e34736d3
container_end_page
container_issue 24
container_start_page
container_title Journal of applied physics
container_volume 135
creator Tariq, Muneeb
Rao, Rekha
Kesari, Swayam
Rao, Mala N.
Deshpande, M. P.
description Using resonant Raman spectroscopy with 632.8 nm (1.96 eV) laser, we describe the Raman spectra of single crystals of transition metal dichalcogenides with nominal composition MoSe(2−x)Sx for x = 0.2. Changes in Raman spectra at some regions of the sample indicated non-stoichiometry and, in particular, chalcogenide vacancies. At low temperatures around 77 K, we observed unusual temperature dependent enhancement in the intensity of non-zone center modes as well as overtones and combination modes in Raman spectra. This enhancement in the intensity is correlated to the resonance achieved in the non-stoichiometric regions of the crystal at low temperatures. Observed resonance is attributed to modification in the electronic structure due to defects. Energy dispersive x-ray spectroscopy measurements confirmed chalcogenide vacancies in the crystals. The change in the electronic structure due to defects is also corroborated by photoluminescence spectroscopy measurements.
doi_str_mv 10.1063/5.0202830
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0202830</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3072330703</sourcerecordid><originalsourceid>FETCH-LOGICAL-c217t-6b21ccf55fba251d117683191e3ca92ffd8d71acb943b16b45a456292e34736d3</originalsourceid><addsrcrecordid>eNp9kD1PwzAURS0EEqEw8A8sMYGU4GfHSTyi8ikVIVGYLcdxiqvWDrYz9N-Tqp1Z3l2O7n06CF0DKYBU7J4XhBLaMHKCMiCNyGvOySnKCKGQN6IW5-gixjUhAA0TGZKPpjc64ZjGzpqIrcMpKBdtst7hrUlqgzurf9RG-5VxtjP43S8NFM2SFBSP0boVDiZ6p1zCn2qrHI7D1Bh81H7YXaKzXm2iuTrmDH0_P33NX_PFx8vb_GGRawp1yquWgtY9532rKIcOoK4aBgIM00rQvu-argalW1GyFqq25KrkFRXUsLJmVcdm6ObQOwT_O5qY5NqPwU2TkpGasukQNlG3B0pP78VgejkEu1VhJ4HIvT_J5dHfxN4d2KhtUnsd_8B_PYBuyw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3072330703</pqid></control><display><type>article</type><title>Defect studies in transition metal dichalcogenide MoSe1.8S0.2 using resonant Raman spectroscopy</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Tariq, Muneeb ; Rao, Rekha ; Kesari, Swayam ; Rao, Mala N. ; Deshpande, M. P.</creator><creatorcontrib>Tariq, Muneeb ; Rao, Rekha ; Kesari, Swayam ; Rao, Mala N. ; Deshpande, M. P.</creatorcontrib><description>Using resonant Raman spectroscopy with 632.8 nm (1.96 eV) laser, we describe the Raman spectra of single crystals of transition metal dichalcogenides with nominal composition MoSe(2−x)Sx for x = 0.2. Changes in Raman spectra at some regions of the sample indicated non-stoichiometry and, in particular, chalcogenide vacancies. At low temperatures around 77 K, we observed unusual temperature dependent enhancement in the intensity of non-zone center modes as well as overtones and combination modes in Raman spectra. This enhancement in the intensity is correlated to the resonance achieved in the non-stoichiometric regions of the crystal at low temperatures. Observed resonance is attributed to modification in the electronic structure due to defects. Energy dispersive x-ray spectroscopy measurements confirmed chalcogenide vacancies in the crystals. The change in the electronic structure due to defects is also corroborated by photoluminescence spectroscopy measurements.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0202830</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Chalcogenides ; Crystal defects ; Electronic structure ; Lattice vacancies ; Low temperature ; Photoluminescence ; Raman spectra ; Raman spectroscopy ; Resonance ; Single crystals ; Spectroscopic analysis ; Stoichiometry ; Temperature dependence ; Transition metal compounds</subject><ispartof>Journal of applied physics, 2024-06, Vol.135 (24)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c217t-6b21ccf55fba251d117683191e3ca92ffd8d71acb943b16b45a456292e34736d3</cites><orcidid>0000-0001-7575-7794 ; 0000-0002-5597-4406 ; 0009-0008-8568-8233 ; 0000-0002-1848-6171 ; 0009-0005-7915-5826</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Tariq, Muneeb</creatorcontrib><creatorcontrib>Rao, Rekha</creatorcontrib><creatorcontrib>Kesari, Swayam</creatorcontrib><creatorcontrib>Rao, Mala N.</creatorcontrib><creatorcontrib>Deshpande, M. P.</creatorcontrib><title>Defect studies in transition metal dichalcogenide MoSe1.8S0.2 using resonant Raman spectroscopy</title><title>Journal of applied physics</title><description>Using resonant Raman spectroscopy with 632.8 nm (1.96 eV) laser, we describe the Raman spectra of single crystals of transition metal dichalcogenides with nominal composition MoSe(2−x)Sx for x = 0.2. Changes in Raman spectra at some regions of the sample indicated non-stoichiometry and, in particular, chalcogenide vacancies. At low temperatures around 77 K, we observed unusual temperature dependent enhancement in the intensity of non-zone center modes as well as overtones and combination modes in Raman spectra. This enhancement in the intensity is correlated to the resonance achieved in the non-stoichiometric regions of the crystal at low temperatures. Observed resonance is attributed to modification in the electronic structure due to defects. Energy dispersive x-ray spectroscopy measurements confirmed chalcogenide vacancies in the crystals. The change in the electronic structure due to defects is also corroborated by photoluminescence spectroscopy measurements.</description><subject>Chalcogenides</subject><subject>Crystal defects</subject><subject>Electronic structure</subject><subject>Lattice vacancies</subject><subject>Low temperature</subject><subject>Photoluminescence</subject><subject>Raman spectra</subject><subject>Raman spectroscopy</subject><subject>Resonance</subject><subject>Single crystals</subject><subject>Spectroscopic analysis</subject><subject>Stoichiometry</subject><subject>Temperature dependence</subject><subject>Transition metal compounds</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>AJDQP</sourceid><recordid>eNp9kD1PwzAURS0EEqEw8A8sMYGU4GfHSTyi8ikVIVGYLcdxiqvWDrYz9N-Tqp1Z3l2O7n06CF0DKYBU7J4XhBLaMHKCMiCNyGvOySnKCKGQN6IW5-gixjUhAA0TGZKPpjc64ZjGzpqIrcMpKBdtst7hrUlqgzurf9RG-5VxtjP43S8NFM2SFBSP0boVDiZ6p1zCn2qrHI7D1Bh81H7YXaKzXm2iuTrmDH0_P33NX_PFx8vb_GGRawp1yquWgtY9532rKIcOoK4aBgIM00rQvu-argalW1GyFqq25KrkFRXUsLJmVcdm6ObQOwT_O5qY5NqPwU2TkpGasukQNlG3B0pP78VgejkEu1VhJ4HIvT_J5dHfxN4d2KhtUnsd_8B_PYBuyw</recordid><startdate>20240628</startdate><enddate>20240628</enddate><creator>Tariq, Muneeb</creator><creator>Rao, Rekha</creator><creator>Kesari, Swayam</creator><creator>Rao, Mala N.</creator><creator>Deshpande, M. P.</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7575-7794</orcidid><orcidid>https://orcid.org/0000-0002-5597-4406</orcidid><orcidid>https://orcid.org/0009-0008-8568-8233</orcidid><orcidid>https://orcid.org/0000-0002-1848-6171</orcidid><orcidid>https://orcid.org/0009-0005-7915-5826</orcidid></search><sort><creationdate>20240628</creationdate><title>Defect studies in transition metal dichalcogenide MoSe1.8S0.2 using resonant Raman spectroscopy</title><author>Tariq, Muneeb ; Rao, Rekha ; Kesari, Swayam ; Rao, Mala N. ; Deshpande, M. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c217t-6b21ccf55fba251d117683191e3ca92ffd8d71acb943b16b45a456292e34736d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Chalcogenides</topic><topic>Crystal defects</topic><topic>Electronic structure</topic><topic>Lattice vacancies</topic><topic>Low temperature</topic><topic>Photoluminescence</topic><topic>Raman spectra</topic><topic>Raman spectroscopy</topic><topic>Resonance</topic><topic>Single crystals</topic><topic>Spectroscopic analysis</topic><topic>Stoichiometry</topic><topic>Temperature dependence</topic><topic>Transition metal compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tariq, Muneeb</creatorcontrib><creatorcontrib>Rao, Rekha</creatorcontrib><creatorcontrib>Kesari, Swayam</creatorcontrib><creatorcontrib>Rao, Mala N.</creatorcontrib><creatorcontrib>Deshpande, M. P.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tariq, Muneeb</au><au>Rao, Rekha</au><au>Kesari, Swayam</au><au>Rao, Mala N.</au><au>Deshpande, M. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Defect studies in transition metal dichalcogenide MoSe1.8S0.2 using resonant Raman spectroscopy</atitle><jtitle>Journal of applied physics</jtitle><date>2024-06-28</date><risdate>2024</risdate><volume>135</volume><issue>24</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Using resonant Raman spectroscopy with 632.8 nm (1.96 eV) laser, we describe the Raman spectra of single crystals of transition metal dichalcogenides with nominal composition MoSe(2−x)Sx for x = 0.2. Changes in Raman spectra at some regions of the sample indicated non-stoichiometry and, in particular, chalcogenide vacancies. At low temperatures around 77 K, we observed unusual temperature dependent enhancement in the intensity of non-zone center modes as well as overtones and combination modes in Raman spectra. This enhancement in the intensity is correlated to the resonance achieved in the non-stoichiometric regions of the crystal at low temperatures. Observed resonance is attributed to modification in the electronic structure due to defects. Energy dispersive x-ray spectroscopy measurements confirmed chalcogenide vacancies in the crystals. The change in the electronic structure due to defects is also corroborated by photoluminescence spectroscopy measurements.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0202830</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7575-7794</orcidid><orcidid>https://orcid.org/0000-0002-5597-4406</orcidid><orcidid>https://orcid.org/0009-0008-8568-8233</orcidid><orcidid>https://orcid.org/0000-0002-1848-6171</orcidid><orcidid>https://orcid.org/0009-0005-7915-5826</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2024-06, Vol.135 (24)
issn 0021-8979
1089-7550
language eng
recordid cdi_crossref_primary_10_1063_5_0202830
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Chalcogenides
Crystal defects
Electronic structure
Lattice vacancies
Low temperature
Photoluminescence
Raman spectra
Raman spectroscopy
Resonance
Single crystals
Spectroscopic analysis
Stoichiometry
Temperature dependence
Transition metal compounds
title Defect studies in transition metal dichalcogenide MoSe1.8S0.2 using resonant Raman spectroscopy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T17%3A02%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Defect%20studies%20in%20transition%20metal%20dichalcogenide%20MoSe1.8S0.2%20using%20resonant%20Raman%20spectroscopy&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Tariq,%20Muneeb&rft.date=2024-06-28&rft.volume=135&rft.issue=24&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0202830&rft_dat=%3Cproquest_cross%3E3072330703%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c217t-6b21ccf55fba251d117683191e3ca92ffd8d71acb943b16b45a456292e34736d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3072330703&rft_id=info:pmid/&rfr_iscdi=true