Loading…
Impact of helical grooves on drag force and flow-induced noise of a cylinder under subcritical Reynolds numbers
The drag force and flow-induced noise of underwater vehicles significantly affect their hydrodynamic and stealth performance. This paper investigates the impact of helical grooves on the drag force and flow-induced noise of underwater vehicles through numerical simulations of the flow around cylinde...
Saved in:
Published in: | Physics of fluids (1994) 2024-07, Vol.36 (7) |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The drag force and flow-induced noise of underwater vehicles significantly affect their hydrodynamic and stealth performance. This paper investigates the impact of helical grooves on the drag force and flow-induced noise of underwater vehicles through numerical simulations of the flow around cylinders with two types of helical grooves under various subcritical Reynolds numbers. The simulation scheme employs the large-eddy simulation framework combined with the Lighthill acoustic analogy method. The results show that the helical-groove structure can achieve reductions of up to 30% in drag and 5 dB in noise. These helical grooves have a significant effect in terms of suppressing the formation of a Karman vortex street downstream of the cylinder. Under subcritical Reynolds numbers, the drag-reduction effect of the helically grooved cylinder decreases as the number of helical grooves increases, while the noise-reduction effect increases with increasing number of helical grooves. |
---|---|
ISSN: | 1070-6631 1089-7666 |
DOI: | 10.1063/5.0216273 |