Loading…

Aerodynamic design of supersonic compressor cascade and vorticity dynamic diagnosis of flow field structure

High-load counter-rotating compressor plays a crucial role in reducing the axial length and weight of the compressor and increasing the thrust-to-weight ratio of the aero-engine. However, the boundary layer flow separation induced by shock waves in the channel of high adverse pressure gradient also...

Full description

Saved in:
Bibliographic Details
Published in:Physics of fluids (1994) 2024-07, Vol.36 (7)
Main Authors: Yan, Tingsong, Yan, Peigang, Liang, Zhuoming, Chen, Huanlong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c182t-df2956a0573fc759e9818257cd3d3804a56f84fb048ae9bd0095cce5c4acf8a83
container_end_page
container_issue 7
container_start_page
container_title Physics of fluids (1994)
container_volume 36
creator Yan, Tingsong
Yan, Peigang
Liang, Zhuoming
Chen, Huanlong
description High-load counter-rotating compressor plays a crucial role in reducing the axial length and weight of the compressor and increasing the thrust-to-weight ratio of the aero-engine. However, the boundary layer flow separation induced by shock waves in the channel of high adverse pressure gradient also brings more aerodynamic losses. This paper proposed a supersonic compressor cascade modeling method based on the unique inlet angle theory and the superimposing thickness on the suction surface method. It carried out aerodynamic optimization design of cascade with inlet Mach number of 1.85 combined with numerical optimization technology, vorticity dynamics diagnosis, and planar cascade experiment. The results show that multiple shock wave combination pressurization can be realized in the supersonic cascade channel. At the design point, the static pressure ratio is 3.285, and the total pressure recovery coefficient reaches 86.82%, and the experimental results of planar cascade also verify the correctness of the simulation method. In addition, the correlation laws between the distribution of the vorticity dynamic parameter, shock wave structure, and aerodynamic performance of cascade were analyzed by the vorticity dynamic flow field diagnosis method, which provides a beneficial reference for the subsequent compressor design.
doi_str_mv 10.1063/5.0218472
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0218472</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3080845290</sourcerecordid><originalsourceid>FETCH-LOGICAL-c182t-df2956a0573fc759e9818257cd3d3804a56f84fb048ae9bd0095cce5c4acf8a83</originalsourceid><addsrcrecordid>eNp9kM1LAzEQxYMoWKsH_4OAJ4XV2c0mmxxL8QsKXvS8pPkoqe1mzWSV_vduafHoaYbHb97wHiHXJdyXINgDv4eqlHVTnZBJCVIVjRDidL83UAjBynNygbgGAKYqMSGfM5ei3XV6Gwy1DsOqo9FTHHqXMHajaOK2Tw4xJmo0Gm0d1Z2l3zHlYELe0b_roFddxIB7A7-JP9QHt7EUcxpMHpK7JGdeb9BdHeeUfDw9vs9fisXb8-t8tihMKatcWF8pLjTwhnnTcOWUHHXeGMssk1BrLrys_RJqqZ1aWgDFjXHc1Np4qSWbkpuDb5_i1-Awt-s4pG582TKQIGteKRip2wNlUkRMzrd9Cluddm0J7b7LlrfHLkf27sDimFjnELt_4F-InHV6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3080845290</pqid></control><display><type>article</type><title>Aerodynamic design of supersonic compressor cascade and vorticity dynamic diagnosis of flow field structure</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP Digital Archive</source><creator>Yan, Tingsong ; Yan, Peigang ; Liang, Zhuoming ; Chen, Huanlong</creator><creatorcontrib>Yan, Tingsong ; Yan, Peigang ; Liang, Zhuoming ; Chen, Huanlong</creatorcontrib><description>High-load counter-rotating compressor plays a crucial role in reducing the axial length and weight of the compressor and increasing the thrust-to-weight ratio of the aero-engine. However, the boundary layer flow separation induced by shock waves in the channel of high adverse pressure gradient also brings more aerodynamic losses. This paper proposed a supersonic compressor cascade modeling method based on the unique inlet angle theory and the superimposing thickness on the suction surface method. It carried out aerodynamic optimization design of cascade with inlet Mach number of 1.85 combined with numerical optimization technology, vorticity dynamics diagnosis, and planar cascade experiment. The results show that multiple shock wave combination pressurization can be realized in the supersonic cascade channel. At the design point, the static pressure ratio is 3.285, and the total pressure recovery coefficient reaches 86.82%, and the experimental results of planar cascade also verify the correctness of the simulation method. In addition, the correlation laws between the distribution of the vorticity dynamic parameter, shock wave structure, and aerodynamic performance of cascade were analyzed by the vorticity dynamic flow field diagnosis method, which provides a beneficial reference for the subsequent compressor design.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0218472</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Boundary layer flow ; Cascade flow ; Design optimization ; Design parameters ; Diagnosis ; Dynamic structural analysis ; Flow separation ; Mach number ; Pressure ratio ; Pressure recovery ; Shock waves ; Static pressure ; Suction ; Supersonic compressors ; Thickness ; Vorticity</subject><ispartof>Physics of fluids (1994), 2024-07, Vol.36 (7)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c182t-df2956a0573fc759e9818257cd3d3804a56f84fb048ae9bd0095cce5c4acf8a83</cites><orcidid>0009-0002-7228-9184</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1559,27924,27925</link.rule.ids></links><search><creatorcontrib>Yan, Tingsong</creatorcontrib><creatorcontrib>Yan, Peigang</creatorcontrib><creatorcontrib>Liang, Zhuoming</creatorcontrib><creatorcontrib>Chen, Huanlong</creatorcontrib><title>Aerodynamic design of supersonic compressor cascade and vorticity dynamic diagnosis of flow field structure</title><title>Physics of fluids (1994)</title><description>High-load counter-rotating compressor plays a crucial role in reducing the axial length and weight of the compressor and increasing the thrust-to-weight ratio of the aero-engine. However, the boundary layer flow separation induced by shock waves in the channel of high adverse pressure gradient also brings more aerodynamic losses. This paper proposed a supersonic compressor cascade modeling method based on the unique inlet angle theory and the superimposing thickness on the suction surface method. It carried out aerodynamic optimization design of cascade with inlet Mach number of 1.85 combined with numerical optimization technology, vorticity dynamics diagnosis, and planar cascade experiment. The results show that multiple shock wave combination pressurization can be realized in the supersonic cascade channel. At the design point, the static pressure ratio is 3.285, and the total pressure recovery coefficient reaches 86.82%, and the experimental results of planar cascade also verify the correctness of the simulation method. In addition, the correlation laws between the distribution of the vorticity dynamic parameter, shock wave structure, and aerodynamic performance of cascade were analyzed by the vorticity dynamic flow field diagnosis method, which provides a beneficial reference for the subsequent compressor design.</description><subject>Boundary layer flow</subject><subject>Cascade flow</subject><subject>Design optimization</subject><subject>Design parameters</subject><subject>Diagnosis</subject><subject>Dynamic structural analysis</subject><subject>Flow separation</subject><subject>Mach number</subject><subject>Pressure ratio</subject><subject>Pressure recovery</subject><subject>Shock waves</subject><subject>Static pressure</subject><subject>Suction</subject><subject>Supersonic compressors</subject><subject>Thickness</subject><subject>Vorticity</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LAzEQxYMoWKsH_4OAJ4XV2c0mmxxL8QsKXvS8pPkoqe1mzWSV_vduafHoaYbHb97wHiHXJdyXINgDv4eqlHVTnZBJCVIVjRDidL83UAjBynNygbgGAKYqMSGfM5ei3XV6Gwy1DsOqo9FTHHqXMHajaOK2Tw4xJmo0Gm0d1Z2l3zHlYELe0b_roFddxIB7A7-JP9QHt7EUcxpMHpK7JGdeb9BdHeeUfDw9vs9fisXb8-t8tihMKatcWF8pLjTwhnnTcOWUHHXeGMssk1BrLrys_RJqqZ1aWgDFjXHc1Np4qSWbkpuDb5_i1-Awt-s4pG582TKQIGteKRip2wNlUkRMzrd9Cluddm0J7b7LlrfHLkf27sDimFjnELt_4F-InHV6</recordid><startdate>202407</startdate><enddate>202407</enddate><creator>Yan, Tingsong</creator><creator>Yan, Peigang</creator><creator>Liang, Zhuoming</creator><creator>Chen, Huanlong</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0002-7228-9184</orcidid></search><sort><creationdate>202407</creationdate><title>Aerodynamic design of supersonic compressor cascade and vorticity dynamic diagnosis of flow field structure</title><author>Yan, Tingsong ; Yan, Peigang ; Liang, Zhuoming ; Chen, Huanlong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c182t-df2956a0573fc759e9818257cd3d3804a56f84fb048ae9bd0095cce5c4acf8a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Boundary layer flow</topic><topic>Cascade flow</topic><topic>Design optimization</topic><topic>Design parameters</topic><topic>Diagnosis</topic><topic>Dynamic structural analysis</topic><topic>Flow separation</topic><topic>Mach number</topic><topic>Pressure ratio</topic><topic>Pressure recovery</topic><topic>Shock waves</topic><topic>Static pressure</topic><topic>Suction</topic><topic>Supersonic compressors</topic><topic>Thickness</topic><topic>Vorticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Tingsong</creatorcontrib><creatorcontrib>Yan, Peigang</creatorcontrib><creatorcontrib>Liang, Zhuoming</creatorcontrib><creatorcontrib>Chen, Huanlong</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Tingsong</au><au>Yan, Peigang</au><au>Liang, Zhuoming</au><au>Chen, Huanlong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aerodynamic design of supersonic compressor cascade and vorticity dynamic diagnosis of flow field structure</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2024-07</date><risdate>2024</risdate><volume>36</volume><issue>7</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>High-load counter-rotating compressor plays a crucial role in reducing the axial length and weight of the compressor and increasing the thrust-to-weight ratio of the aero-engine. However, the boundary layer flow separation induced by shock waves in the channel of high adverse pressure gradient also brings more aerodynamic losses. This paper proposed a supersonic compressor cascade modeling method based on the unique inlet angle theory and the superimposing thickness on the suction surface method. It carried out aerodynamic optimization design of cascade with inlet Mach number of 1.85 combined with numerical optimization technology, vorticity dynamics diagnosis, and planar cascade experiment. The results show that multiple shock wave combination pressurization can be realized in the supersonic cascade channel. At the design point, the static pressure ratio is 3.285, and the total pressure recovery coefficient reaches 86.82%, and the experimental results of planar cascade also verify the correctness of the simulation method. In addition, the correlation laws between the distribution of the vorticity dynamic parameter, shock wave structure, and aerodynamic performance of cascade were analyzed by the vorticity dynamic flow field diagnosis method, which provides a beneficial reference for the subsequent compressor design.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0218472</doi><tpages>17</tpages><orcidid>https://orcid.org/0009-0002-7228-9184</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2024-07, Vol.36 (7)
issn 1070-6631
1089-7666
language eng
recordid cdi_crossref_primary_10_1063_5_0218472
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP Digital Archive
subjects Boundary layer flow
Cascade flow
Design optimization
Design parameters
Diagnosis
Dynamic structural analysis
Flow separation
Mach number
Pressure ratio
Pressure recovery
Shock waves
Static pressure
Suction
Supersonic compressors
Thickness
Vorticity
title Aerodynamic design of supersonic compressor cascade and vorticity dynamic diagnosis of flow field structure
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T19%3A26%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aerodynamic%20design%20of%20supersonic%20compressor%20cascade%20and%20vorticity%20dynamic%20diagnosis%20of%20flow%20field%20structure&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Yan,%20Tingsong&rft.date=2024-07&rft.volume=36&rft.issue=7&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0218472&rft_dat=%3Cproquest_cross%3E3080845290%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c182t-df2956a0573fc759e9818257cd3d3804a56f84fb048ae9bd0095cce5c4acf8a83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3080845290&rft_id=info:pmid/&rfr_iscdi=true