Loading…
A mean-field theory for characterizing the closing rates of DNA origami hinges
The evolution of dynamic DNA nanostructures has propelled DNA nanotechnology into a robust and versatile field, offering groundbreaking applications in nanoscale communication, drug delivery, and molecular computing. Yet, the full potential of this technology awaits further enhancement through optim...
Saved in:
Published in: | The Journal of chemical physics 2024-08, Vol.161 (7) |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c238t-2679ab2f6b03fa5e807297cd6370318170e6a618b06149f4e80f623087139cad3 |
container_end_page | |
container_issue | 7 |
container_start_page | |
container_title | The Journal of chemical physics |
container_volume | 161 |
creator | Yeboah, Isaac O. Young, Robert T. Mosioma, Mark Sensale, Sebastian |
description | The evolution of dynamic DNA nanostructures has propelled DNA nanotechnology into a robust and versatile field, offering groundbreaking applications in nanoscale communication, drug delivery, and molecular computing. Yet, the full potential of this technology awaits further enhancement through optimization of kinetic properties governing conformational changes. In this work, we introduce a mean-field theory to characterize the kinetic behavior of a dynamic DNA origami hinge where each arm bears complementary single-stranded DNA overhangs of different lengths, which can latch the hinge at a closed conformation. This device is currently being investigated for multiple applications, being of particular interest the development of DNA-based rapid diagnostic tests for coronavirus. Drawing from classical statistical mechanics theories, we derive analytical expressions for the mean binding time of these overhangs within a constant hinge. This analysis is then extended to flexible hinges, where the angle diffuses within a predetermined energy landscape. We validate our model by comparing it with experimental measurements of the closing rates of DNA nanocalipers with different energy landscapes and overhang lengths, demonstrating excellent agreement and suggesting fast angular relaxation relative to binding. These findings offer insights that can guide the optimization of devices for specific state lifetimes. Moreover, the framework introduced here lays the groundwork for further advancements in modeling the kinetics of dynamic DNA nanostructures. |
doi_str_mv | 10.1063/5.0222446 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0222446</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3093252594</sourcerecordid><originalsourceid>FETCH-LOGICAL-c238t-2679ab2f6b03fa5e807297cd6370318170e6a618b06149f4e80f623087139cad3</originalsourceid><addsrcrecordid>eNp90LtOwzAUBmALgWgpDLwAisQCSCnHl9jxWJWrVMECc-S4dusqiYudDOXpSWlhYGA6ls7nX0c_QucYxhg4vc3GQAhhjB-gIYZcpoJLOERDAIJTyYEP0EmMKwDAgrBjNKASsyzjbIheJkltVJNaZ6p50i6ND5vE-pDopQpKtya4T9cstptEVz5u30G1JibeJnf9bx_cQtUuWfYbE0_RkVVVNGf7OULvD_dv06d09vr4PJ3MUk1o3qaEC6lKYnkJ1KrM5CCIFHrOqQCKcyzAcMVxXgLHTFrWA8sJhVxgKrWa0xG62uWug__oTGyL2kVtqko1xnexoCApFhkH2tPLP3Tlu9D0130rkpFMsl5d75QOPsZgbLEOrlZhU2AotiUXWbEvubcX-8SurM38V_602oObHYjatap1vvkn7QuWToCp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3093252594</pqid></control><display><type>article</type><title>A mean-field theory for characterizing the closing rates of DNA origami hinges</title><source>American Institute of Physics (AIP) Publications</source><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Yeboah, Isaac O. ; Young, Robert T. ; Mosioma, Mark ; Sensale, Sebastian</creator><creatorcontrib>Yeboah, Isaac O. ; Young, Robert T. ; Mosioma, Mark ; Sensale, Sebastian</creatorcontrib><description>The evolution of dynamic DNA nanostructures has propelled DNA nanotechnology into a robust and versatile field, offering groundbreaking applications in nanoscale communication, drug delivery, and molecular computing. Yet, the full potential of this technology awaits further enhancement through optimization of kinetic properties governing conformational changes. In this work, we introduce a mean-field theory to characterize the kinetic behavior of a dynamic DNA origami hinge where each arm bears complementary single-stranded DNA overhangs of different lengths, which can latch the hinge at a closed conformation. This device is currently being investigated for multiple applications, being of particular interest the development of DNA-based rapid diagnostic tests for coronavirus. Drawing from classical statistical mechanics theories, we derive analytical expressions for the mean binding time of these overhangs within a constant hinge. This analysis is then extended to flexible hinges, where the angle diffuses within a predetermined energy landscape. We validate our model by comparing it with experimental measurements of the closing rates of DNA nanocalipers with different energy landscapes and overhang lengths, demonstrating excellent agreement and suggesting fast angular relaxation relative to binding. These findings offer insights that can guide the optimization of devices for specific state lifetimes. Moreover, the framework introduced here lays the groundwork for further advancements in modeling the kinetics of dynamic DNA nanostructures.</description><identifier>ISSN: 0021-9606</identifier><identifier>ISSN: 1089-7690</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0222446</identifier><identifier>PMID: 39145564</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Binding ; Binding energy ; DNA - chemistry ; DNA, Single-Stranded - chemistry ; Kinetics ; Mean field theory ; Nanostructure ; Nanostructures - chemistry ; Nanotechnology - methods ; Nucleic Acid Conformation ; Optimization ; Statistical mechanics</subject><ispartof>The Journal of chemical physics, 2024-08, Vol.161 (7)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c238t-2679ab2f6b03fa5e807297cd6370318170e6a618b06149f4e80f623087139cad3</cites><orcidid>0000-0003-0502-5138 ; 0000-0001-5471-3792</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0222446$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,777,779,781,792,27905,27906,76132</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39145564$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yeboah, Isaac O.</creatorcontrib><creatorcontrib>Young, Robert T.</creatorcontrib><creatorcontrib>Mosioma, Mark</creatorcontrib><creatorcontrib>Sensale, Sebastian</creatorcontrib><title>A mean-field theory for characterizing the closing rates of DNA origami hinges</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>The evolution of dynamic DNA nanostructures has propelled DNA nanotechnology into a robust and versatile field, offering groundbreaking applications in nanoscale communication, drug delivery, and molecular computing. Yet, the full potential of this technology awaits further enhancement through optimization of kinetic properties governing conformational changes. In this work, we introduce a mean-field theory to characterize the kinetic behavior of a dynamic DNA origami hinge where each arm bears complementary single-stranded DNA overhangs of different lengths, which can latch the hinge at a closed conformation. This device is currently being investigated for multiple applications, being of particular interest the development of DNA-based rapid diagnostic tests for coronavirus. Drawing from classical statistical mechanics theories, we derive analytical expressions for the mean binding time of these overhangs within a constant hinge. This analysis is then extended to flexible hinges, where the angle diffuses within a predetermined energy landscape. We validate our model by comparing it with experimental measurements of the closing rates of DNA nanocalipers with different energy landscapes and overhang lengths, demonstrating excellent agreement and suggesting fast angular relaxation relative to binding. These findings offer insights that can guide the optimization of devices for specific state lifetimes. Moreover, the framework introduced here lays the groundwork for further advancements in modeling the kinetics of dynamic DNA nanostructures.</description><subject>Binding</subject><subject>Binding energy</subject><subject>DNA - chemistry</subject><subject>DNA, Single-Stranded - chemistry</subject><subject>Kinetics</subject><subject>Mean field theory</subject><subject>Nanostructure</subject><subject>Nanostructures - chemistry</subject><subject>Nanotechnology - methods</subject><subject>Nucleic Acid Conformation</subject><subject>Optimization</subject><subject>Statistical mechanics</subject><issn>0021-9606</issn><issn>1089-7690</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp90LtOwzAUBmALgWgpDLwAisQCSCnHl9jxWJWrVMECc-S4dusqiYudDOXpSWlhYGA6ls7nX0c_QucYxhg4vc3GQAhhjB-gIYZcpoJLOERDAIJTyYEP0EmMKwDAgrBjNKASsyzjbIheJkltVJNaZ6p50i6ND5vE-pDopQpKtya4T9cstptEVz5u30G1JibeJnf9bx_cQtUuWfYbE0_RkVVVNGf7OULvD_dv06d09vr4PJ3MUk1o3qaEC6lKYnkJ1KrM5CCIFHrOqQCKcyzAcMVxXgLHTFrWA8sJhVxgKrWa0xG62uWug__oTGyL2kVtqko1xnexoCApFhkH2tPLP3Tlu9D0130rkpFMsl5d75QOPsZgbLEOrlZhU2AotiUXWbEvubcX-8SurM38V_602oObHYjatap1vvkn7QuWToCp</recordid><startdate>20240821</startdate><enddate>20240821</enddate><creator>Yeboah, Isaac O.</creator><creator>Young, Robert T.</creator><creator>Mosioma, Mark</creator><creator>Sensale, Sebastian</creator><general>American Institute of Physics</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0502-5138</orcidid><orcidid>https://orcid.org/0000-0001-5471-3792</orcidid></search><sort><creationdate>20240821</creationdate><title>A mean-field theory for characterizing the closing rates of DNA origami hinges</title><author>Yeboah, Isaac O. ; Young, Robert T. ; Mosioma, Mark ; Sensale, Sebastian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c238t-2679ab2f6b03fa5e807297cd6370318170e6a618b06149f4e80f623087139cad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Binding</topic><topic>Binding energy</topic><topic>DNA - chemistry</topic><topic>DNA, Single-Stranded - chemistry</topic><topic>Kinetics</topic><topic>Mean field theory</topic><topic>Nanostructure</topic><topic>Nanostructures - chemistry</topic><topic>Nanotechnology - methods</topic><topic>Nucleic Acid Conformation</topic><topic>Optimization</topic><topic>Statistical mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yeboah, Isaac O.</creatorcontrib><creatorcontrib>Young, Robert T.</creatorcontrib><creatorcontrib>Mosioma, Mark</creatorcontrib><creatorcontrib>Sensale, Sebastian</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yeboah, Isaac O.</au><au>Young, Robert T.</au><au>Mosioma, Mark</au><au>Sensale, Sebastian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A mean-field theory for characterizing the closing rates of DNA origami hinges</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2024-08-21</date><risdate>2024</risdate><volume>161</volume><issue>7</issue><issn>0021-9606</issn><issn>1089-7690</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>The evolution of dynamic DNA nanostructures has propelled DNA nanotechnology into a robust and versatile field, offering groundbreaking applications in nanoscale communication, drug delivery, and molecular computing. Yet, the full potential of this technology awaits further enhancement through optimization of kinetic properties governing conformational changes. In this work, we introduce a mean-field theory to characterize the kinetic behavior of a dynamic DNA origami hinge where each arm bears complementary single-stranded DNA overhangs of different lengths, which can latch the hinge at a closed conformation. This device is currently being investigated for multiple applications, being of particular interest the development of DNA-based rapid diagnostic tests for coronavirus. Drawing from classical statistical mechanics theories, we derive analytical expressions for the mean binding time of these overhangs within a constant hinge. This analysis is then extended to flexible hinges, where the angle diffuses within a predetermined energy landscape. We validate our model by comparing it with experimental measurements of the closing rates of DNA nanocalipers with different energy landscapes and overhang lengths, demonstrating excellent agreement and suggesting fast angular relaxation relative to binding. These findings offer insights that can guide the optimization of devices for specific state lifetimes. Moreover, the framework introduced here lays the groundwork for further advancements in modeling the kinetics of dynamic DNA nanostructures.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>39145564</pmid><doi>10.1063/5.0222446</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0502-5138</orcidid><orcidid>https://orcid.org/0000-0001-5471-3792</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2024-08, Vol.161 (7) |
issn | 0021-9606 1089-7690 1089-7690 |
language | eng |
recordid | cdi_crossref_primary_10_1063_5_0222446 |
source | American Institute of Physics (AIP) Publications; American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Binding Binding energy DNA - chemistry DNA, Single-Stranded - chemistry Kinetics Mean field theory Nanostructure Nanostructures - chemistry Nanotechnology - methods Nucleic Acid Conformation Optimization Statistical mechanics |
title | A mean-field theory for characterizing the closing rates of DNA origami hinges |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A59%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20mean-field%20theory%20for%20characterizing%20the%20closing%20rates%20of%20DNA%20origami%20hinges&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Yeboah,%20Isaac%20O.&rft.date=2024-08-21&rft.volume=161&rft.issue=7&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0222446&rft_dat=%3Cproquest_cross%3E3093252594%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c238t-2679ab2f6b03fa5e807297cd6370318170e6a618b06149f4e80f623087139cad3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3093252594&rft_id=info:pmid/39145564&rfr_iscdi=true |