Loading…
GaAs-based photonic integrated circuit platform enabling monolithic ring-resonator-coupled lasers
This paper reports on a monolithically integrated gallium arsenide (GaAs)-based photonic integrated circuit platform for wavelengths around 1064 nm. Enabled by spatially selective quantum well removal and two-step epitaxial growth, it supports on-chip gain as well as passive waveguides. In addition,...
Saved in:
Published in: | APL photonics 2024-10, Vol.9 (10), p.106102-106102-11 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper reports on a monolithically integrated gallium arsenide (GaAs)-based photonic integrated circuit platform for wavelengths around 1064 nm. Enabled by spatially selective quantum well removal and two-step epitaxial growth, it supports on-chip gain as well as passive waveguides. In addition, shallow- and deep-etched waveguides are realized. The former result in waveguide losses of less than 2 dB/cm, while the latter enable compact integrated waveguide components. To demonstrate the performance of the platform, racetrack ring resonators based on deep-etched Euler bends and shallow-etched directional couplers are realized, achieving high intrinsic quality factors of 2.6 × 105 and 3.2 × 105 for the fundamental TE and TM mode, respectively. To demonstrate the use of these resonators, ring-resonator-coupled lasers are fabricated, resulting in one-sided output powers of up to 14 mW and single-mode operation with 40 dB side-mode suppression. The successful integration of ring resonators on a GaAs-based active/passive photonic integrated circuit platform paves the way for the realization of fully monolithic, widely tunable, and narrow linewidth ring-resonator-coupled laser sources. |
---|---|
ISSN: | 2378-0967 2378-0967 |
DOI: | 10.1063/5.0223134 |