Loading…

Model of Faraday waves in a cylindrical container with force detuning

Recent experiments by Shao et al. [“Surface wave pattern formation in a cylindrical container,” J. Fluid Mech. 915, A19 (2021)] have revealed complex wave dynamics on the surface of a liquid bath in a vertically vibrated cylindrical container that are related to the presence of a meniscus on the con...

Full description

Saved in:
Bibliographic Details
Published in:Physics of fluids (1994) 2024-11, Vol.36 (11)
Main Authors: Ding, D., Bostwick, J. B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c182t-ba518a3125497b40d81896334c97dedbe68bc7b28eacbeee0c853015140e52ea3
container_end_page
container_issue 11
container_start_page
container_title Physics of fluids (1994)
container_volume 36
creator Ding, D.
Bostwick, J. B.
description Recent experiments by Shao et al. [“Surface wave pattern formation in a cylindrical container,” J. Fluid Mech. 915, A19 (2021)] have revealed complex wave dynamics on the surface of a liquid bath in a vertically vibrated cylindrical container that are related to the presence of a meniscus on the container sidewall. We develop a corresponding theoretical model for this system by detuning the driving acceleration of the container, which results in an inhomogeneous Mathieu equation that governs the wave dynamics whose spatial structure is defined by the mode number pair (n,m), with n and m the radial and azimuthal mode numbers, respectively. Asymmetric m≠0 modes are unaffected by the detuning parameter, which is related to the meniscus shape and satisfy a homogeneous Mathieu equation with the shape of the instability tongues computed by the Floquet theory. The Poincaré–Lindstedt method is used to compute the instability tongues for the axisymmetric m=0 modes, which have a lower threshold acceleration and larger bandwidth that depend upon the detuning parameter. Our model results explicitly show how the shape of the meniscus and spatial structure of the wave determine the temporal response and are in good agreement with prior experimental observations for both pure modes and mixed modes.
doi_str_mv 10.1063/5.0235421
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0235421</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3128391788</sourcerecordid><originalsourceid>FETCH-LOGICAL-c182t-ba518a3125497b40d81896334c97dedbe68bc7b28eacbeee0c853015140e52ea3</originalsourceid><addsrcrecordid>eNp90M1KAzEUBeAgCtbqwjcIuFIYzc8kk1lKaVWouNF1yCR3NGVMapJa-vZOadeu7l18nAMHoWtK7imR_EHcE8ZFzegJmlCi2qqRUp7u_4ZUUnJ6ji5yXhFCeMvkBM1fo4MBxx4vTDLO7PDW_ELGPmCD7W7wwSVvzYBtDMX4AAlvffnCfUwWsIOyCT58XqKz3gwZro53ij4W8_fZc7V8e3qZPS4rSxUrVWcEVYZTJuq26WriFFWt5Ly2bePAdSBVZ5uOKTC2AwBileCECloTEAwMn6KbQ-46xZ8N5KJXcZPCWKnHVMVb2ig1qtuDsinmnKDX6-S_TdppSvR-JS30caXR3h1str6Y4mP4B_8BnZllvg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3128391788</pqid></control><display><type>article</type><title>Model of Faraday waves in a cylindrical container with force detuning</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP Digital Archive</source><creator>Ding, D. ; Bostwick, J. B.</creator><creatorcontrib>Ding, D. ; Bostwick, J. B.</creatorcontrib><description>Recent experiments by Shao et al. [“Surface wave pattern formation in a cylindrical container,” J. Fluid Mech. 915, A19 (2021)] have revealed complex wave dynamics on the surface of a liquid bath in a vertically vibrated cylindrical container that are related to the presence of a meniscus on the container sidewall. We develop a corresponding theoretical model for this system by detuning the driving acceleration of the container, which results in an inhomogeneous Mathieu equation that governs the wave dynamics whose spatial structure is defined by the mode number pair (n,m), with n and m the radial and azimuthal mode numbers, respectively. Asymmetric m≠0 modes are unaffected by the detuning parameter, which is related to the meniscus shape and satisfy a homogeneous Mathieu equation with the shape of the instability tongues computed by the Floquet theory. The Poincaré–Lindstedt method is used to compute the instability tongues for the axisymmetric m=0 modes, which have a lower threshold acceleration and larger bandwidth that depend upon the detuning parameter. Our model results explicitly show how the shape of the meniscus and spatial structure of the wave determine the temporal response and are in good agreement with prior experimental observations for both pure modes and mixed modes.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0235421</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Containers ; Cylindrical waves ; Liquid surfaces ; Menisci ; Parameters ; Structural stability ; Surface waves</subject><ispartof>Physics of fluids (1994), 2024-11, Vol.36 (11)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c182t-ba518a3125497b40d81896334c97dedbe68bc7b28eacbeee0c853015140e52ea3</cites><orcidid>0000-0001-7573-2108</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1558,27922,27923</link.rule.ids></links><search><creatorcontrib>Ding, D.</creatorcontrib><creatorcontrib>Bostwick, J. B.</creatorcontrib><title>Model of Faraday waves in a cylindrical container with force detuning</title><title>Physics of fluids (1994)</title><description>Recent experiments by Shao et al. [“Surface wave pattern formation in a cylindrical container,” J. Fluid Mech. 915, A19 (2021)] have revealed complex wave dynamics on the surface of a liquid bath in a vertically vibrated cylindrical container that are related to the presence of a meniscus on the container sidewall. We develop a corresponding theoretical model for this system by detuning the driving acceleration of the container, which results in an inhomogeneous Mathieu equation that governs the wave dynamics whose spatial structure is defined by the mode number pair (n,m), with n and m the radial and azimuthal mode numbers, respectively. Asymmetric m≠0 modes are unaffected by the detuning parameter, which is related to the meniscus shape and satisfy a homogeneous Mathieu equation with the shape of the instability tongues computed by the Floquet theory. The Poincaré–Lindstedt method is used to compute the instability tongues for the axisymmetric m=0 modes, which have a lower threshold acceleration and larger bandwidth that depend upon the detuning parameter. Our model results explicitly show how the shape of the meniscus and spatial structure of the wave determine the temporal response and are in good agreement with prior experimental observations for both pure modes and mixed modes.</description><subject>Containers</subject><subject>Cylindrical waves</subject><subject>Liquid surfaces</subject><subject>Menisci</subject><subject>Parameters</subject><subject>Structural stability</subject><subject>Surface waves</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>AJDQP</sourceid><recordid>eNp90M1KAzEUBeAgCtbqwjcIuFIYzc8kk1lKaVWouNF1yCR3NGVMapJa-vZOadeu7l18nAMHoWtK7imR_EHcE8ZFzegJmlCi2qqRUp7u_4ZUUnJ6ji5yXhFCeMvkBM1fo4MBxx4vTDLO7PDW_ELGPmCD7W7wwSVvzYBtDMX4AAlvffnCfUwWsIOyCT58XqKz3gwZro53ij4W8_fZc7V8e3qZPS4rSxUrVWcEVYZTJuq26WriFFWt5Ly2bePAdSBVZ5uOKTC2AwBileCECloTEAwMn6KbQ-46xZ8N5KJXcZPCWKnHVMVb2ig1qtuDsinmnKDX6-S_TdppSvR-JS30caXR3h1str6Y4mP4B_8BnZllvg</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Ding, D.</creator><creator>Bostwick, J. B.</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7573-2108</orcidid></search><sort><creationdate>202411</creationdate><title>Model of Faraday waves in a cylindrical container with force detuning</title><author>Ding, D. ; Bostwick, J. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c182t-ba518a3125497b40d81896334c97dedbe68bc7b28eacbeee0c853015140e52ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Containers</topic><topic>Cylindrical waves</topic><topic>Liquid surfaces</topic><topic>Menisci</topic><topic>Parameters</topic><topic>Structural stability</topic><topic>Surface waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, D.</creatorcontrib><creatorcontrib>Bostwick, J. B.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, D.</au><au>Bostwick, J. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model of Faraday waves in a cylindrical container with force detuning</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2024-11</date><risdate>2024</risdate><volume>36</volume><issue>11</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>Recent experiments by Shao et al. [“Surface wave pattern formation in a cylindrical container,” J. Fluid Mech. 915, A19 (2021)] have revealed complex wave dynamics on the surface of a liquid bath in a vertically vibrated cylindrical container that are related to the presence of a meniscus on the container sidewall. We develop a corresponding theoretical model for this system by detuning the driving acceleration of the container, which results in an inhomogeneous Mathieu equation that governs the wave dynamics whose spatial structure is defined by the mode number pair (n,m), with n and m the radial and azimuthal mode numbers, respectively. Asymmetric m≠0 modes are unaffected by the detuning parameter, which is related to the meniscus shape and satisfy a homogeneous Mathieu equation with the shape of the instability tongues computed by the Floquet theory. The Poincaré–Lindstedt method is used to compute the instability tongues for the axisymmetric m=0 modes, which have a lower threshold acceleration and larger bandwidth that depend upon the detuning parameter. Our model results explicitly show how the shape of the meniscus and spatial structure of the wave determine the temporal response and are in good agreement with prior experimental observations for both pure modes and mixed modes.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0235421</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7573-2108</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2024-11, Vol.36 (11)
issn 1070-6631
1089-7666
language eng
recordid cdi_crossref_primary_10_1063_5_0235421
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP Digital Archive
subjects Containers
Cylindrical waves
Liquid surfaces
Menisci
Parameters
Structural stability
Surface waves
title Model of Faraday waves in a cylindrical container with force detuning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T23%3A49%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model%20of%20Faraday%20waves%20in%20a%20cylindrical%20container%20with%20force%20detuning&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Ding,%20D.&rft.date=2024-11&rft.volume=36&rft.issue=11&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0235421&rft_dat=%3Cproquest_cross%3E3128391788%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c182t-ba518a3125497b40d81896334c97dedbe68bc7b28eacbeee0c853015140e52ea3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3128391788&rft_id=info:pmid/&rfr_iscdi=true