Loading…
Model of Faraday waves in a cylindrical container with force detuning
Recent experiments by Shao et al. [“Surface wave pattern formation in a cylindrical container,” J. Fluid Mech. 915, A19 (2021)] have revealed complex wave dynamics on the surface of a liquid bath in a vertically vibrated cylindrical container that are related to the presence of a meniscus on the con...
Saved in:
Published in: | Physics of fluids (1994) 2024-11, Vol.36 (11) |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c182t-ba518a3125497b40d81896334c97dedbe68bc7b28eacbeee0c853015140e52ea3 |
container_end_page | |
container_issue | 11 |
container_start_page | |
container_title | Physics of fluids (1994) |
container_volume | 36 |
creator | Ding, D. Bostwick, J. B. |
description | Recent experiments by Shao et al. [“Surface wave pattern formation in a cylindrical container,” J. Fluid Mech. 915, A19 (2021)] have revealed complex wave dynamics on the surface of a liquid bath in a vertically vibrated cylindrical container that are related to the presence of a meniscus on the container sidewall. We develop a corresponding theoretical model for this system by detuning the driving acceleration of the container, which results in an inhomogeneous Mathieu equation that governs the wave dynamics whose spatial structure is defined by the mode number pair
(n,m), with n and m the radial and azimuthal mode numbers, respectively. Asymmetric
m≠0 modes are unaffected by the detuning parameter, which is related to the meniscus shape and satisfy a homogeneous Mathieu equation with the shape of the instability tongues computed by the Floquet theory. The Poincaré–Lindstedt method is used to compute the instability tongues for the axisymmetric
m=0 modes, which have a lower threshold acceleration and larger bandwidth that depend upon the detuning parameter. Our model results explicitly show how the shape of the meniscus and spatial structure of the wave determine the temporal response and are in good agreement with prior experimental observations for both pure modes and mixed modes. |
doi_str_mv | 10.1063/5.0235421 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0235421</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3128391788</sourcerecordid><originalsourceid>FETCH-LOGICAL-c182t-ba518a3125497b40d81896334c97dedbe68bc7b28eacbeee0c853015140e52ea3</originalsourceid><addsrcrecordid>eNp90M1KAzEUBeAgCtbqwjcIuFIYzc8kk1lKaVWouNF1yCR3NGVMapJa-vZOadeu7l18nAMHoWtK7imR_EHcE8ZFzegJmlCi2qqRUp7u_4ZUUnJ6ji5yXhFCeMvkBM1fo4MBxx4vTDLO7PDW_ELGPmCD7W7wwSVvzYBtDMX4AAlvffnCfUwWsIOyCT58XqKz3gwZro53ij4W8_fZc7V8e3qZPS4rSxUrVWcEVYZTJuq26WriFFWt5Ly2bePAdSBVZ5uOKTC2AwBileCECloTEAwMn6KbQ-46xZ8N5KJXcZPCWKnHVMVb2ig1qtuDsinmnKDX6-S_TdppSvR-JS30caXR3h1str6Y4mP4B_8BnZllvg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3128391788</pqid></control><display><type>article</type><title>Model of Faraday waves in a cylindrical container with force detuning</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP Digital Archive</source><creator>Ding, D. ; Bostwick, J. B.</creator><creatorcontrib>Ding, D. ; Bostwick, J. B.</creatorcontrib><description>Recent experiments by Shao et al. [“Surface wave pattern formation in a cylindrical container,” J. Fluid Mech. 915, A19 (2021)] have revealed complex wave dynamics on the surface of a liquid bath in a vertically vibrated cylindrical container that are related to the presence of a meniscus on the container sidewall. We develop a corresponding theoretical model for this system by detuning the driving acceleration of the container, which results in an inhomogeneous Mathieu equation that governs the wave dynamics whose spatial structure is defined by the mode number pair
(n,m), with n and m the radial and azimuthal mode numbers, respectively. Asymmetric
m≠0 modes are unaffected by the detuning parameter, which is related to the meniscus shape and satisfy a homogeneous Mathieu equation with the shape of the instability tongues computed by the Floquet theory. The Poincaré–Lindstedt method is used to compute the instability tongues for the axisymmetric
m=0 modes, which have a lower threshold acceleration and larger bandwidth that depend upon the detuning parameter. Our model results explicitly show how the shape of the meniscus and spatial structure of the wave determine the temporal response and are in good agreement with prior experimental observations for both pure modes and mixed modes.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0235421</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Containers ; Cylindrical waves ; Liquid surfaces ; Menisci ; Parameters ; Structural stability ; Surface waves</subject><ispartof>Physics of fluids (1994), 2024-11, Vol.36 (11)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c182t-ba518a3125497b40d81896334c97dedbe68bc7b28eacbeee0c853015140e52ea3</cites><orcidid>0000-0001-7573-2108</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1558,27922,27923</link.rule.ids></links><search><creatorcontrib>Ding, D.</creatorcontrib><creatorcontrib>Bostwick, J. B.</creatorcontrib><title>Model of Faraday waves in a cylindrical container with force detuning</title><title>Physics of fluids (1994)</title><description>Recent experiments by Shao et al. [“Surface wave pattern formation in a cylindrical container,” J. Fluid Mech. 915, A19 (2021)] have revealed complex wave dynamics on the surface of a liquid bath in a vertically vibrated cylindrical container that are related to the presence of a meniscus on the container sidewall. We develop a corresponding theoretical model for this system by detuning the driving acceleration of the container, which results in an inhomogeneous Mathieu equation that governs the wave dynamics whose spatial structure is defined by the mode number pair
(n,m), with n and m the radial and azimuthal mode numbers, respectively. Asymmetric
m≠0 modes are unaffected by the detuning parameter, which is related to the meniscus shape and satisfy a homogeneous Mathieu equation with the shape of the instability tongues computed by the Floquet theory. The Poincaré–Lindstedt method is used to compute the instability tongues for the axisymmetric
m=0 modes, which have a lower threshold acceleration and larger bandwidth that depend upon the detuning parameter. Our model results explicitly show how the shape of the meniscus and spatial structure of the wave determine the temporal response and are in good agreement with prior experimental observations for both pure modes and mixed modes.</description><subject>Containers</subject><subject>Cylindrical waves</subject><subject>Liquid surfaces</subject><subject>Menisci</subject><subject>Parameters</subject><subject>Structural stability</subject><subject>Surface waves</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>AJDQP</sourceid><recordid>eNp90M1KAzEUBeAgCtbqwjcIuFIYzc8kk1lKaVWouNF1yCR3NGVMapJa-vZOadeu7l18nAMHoWtK7imR_EHcE8ZFzegJmlCi2qqRUp7u_4ZUUnJ6ji5yXhFCeMvkBM1fo4MBxx4vTDLO7PDW_ELGPmCD7W7wwSVvzYBtDMX4AAlvffnCfUwWsIOyCT58XqKz3gwZro53ij4W8_fZc7V8e3qZPS4rSxUrVWcEVYZTJuq26WriFFWt5Ly2bePAdSBVZ5uOKTC2AwBileCECloTEAwMn6KbQ-46xZ8N5KJXcZPCWKnHVMVb2ig1qtuDsinmnKDX6-S_TdppSvR-JS30caXR3h1str6Y4mP4B_8BnZllvg</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Ding, D.</creator><creator>Bostwick, J. B.</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7573-2108</orcidid></search><sort><creationdate>202411</creationdate><title>Model of Faraday waves in a cylindrical container with force detuning</title><author>Ding, D. ; Bostwick, J. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c182t-ba518a3125497b40d81896334c97dedbe68bc7b28eacbeee0c853015140e52ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Containers</topic><topic>Cylindrical waves</topic><topic>Liquid surfaces</topic><topic>Menisci</topic><topic>Parameters</topic><topic>Structural stability</topic><topic>Surface waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, D.</creatorcontrib><creatorcontrib>Bostwick, J. B.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, D.</au><au>Bostwick, J. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model of Faraday waves in a cylindrical container with force detuning</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2024-11</date><risdate>2024</risdate><volume>36</volume><issue>11</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>Recent experiments by Shao et al. [“Surface wave pattern formation in a cylindrical container,” J. Fluid Mech. 915, A19 (2021)] have revealed complex wave dynamics on the surface of a liquid bath in a vertically vibrated cylindrical container that are related to the presence of a meniscus on the container sidewall. We develop a corresponding theoretical model for this system by detuning the driving acceleration of the container, which results in an inhomogeneous Mathieu equation that governs the wave dynamics whose spatial structure is defined by the mode number pair
(n,m), with n and m the radial and azimuthal mode numbers, respectively. Asymmetric
m≠0 modes are unaffected by the detuning parameter, which is related to the meniscus shape and satisfy a homogeneous Mathieu equation with the shape of the instability tongues computed by the Floquet theory. The Poincaré–Lindstedt method is used to compute the instability tongues for the axisymmetric
m=0 modes, which have a lower threshold acceleration and larger bandwidth that depend upon the detuning parameter. Our model results explicitly show how the shape of the meniscus and spatial structure of the wave determine the temporal response and are in good agreement with prior experimental observations for both pure modes and mixed modes.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0235421</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7573-2108</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-6631 |
ispartof | Physics of fluids (1994), 2024-11, Vol.36 (11) |
issn | 1070-6631 1089-7666 |
language | eng |
recordid | cdi_crossref_primary_10_1063_5_0235421 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP Digital Archive |
subjects | Containers Cylindrical waves Liquid surfaces Menisci Parameters Structural stability Surface waves |
title | Model of Faraday waves in a cylindrical container with force detuning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T23%3A49%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model%20of%20Faraday%20waves%20in%20a%20cylindrical%20container%20with%20force%20detuning&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Ding,%20D.&rft.date=2024-11&rft.volume=36&rft.issue=11&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0235421&rft_dat=%3Cproquest_cross%3E3128391788%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c182t-ba518a3125497b40d81896334c97dedbe68bc7b28eacbeee0c853015140e52ea3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3128391788&rft_id=info:pmid/&rfr_iscdi=true |