Loading…
Double-barrier magnetic tunnel junctions with enhanced tunnel magnetoresistance
Tunnel magnetoresistance (TMR) ratio is a key parameter characterizing the performance of a magnetic tunnel junction (MTJ), and a large TMR ratio is essential for the practical application of it. Generally, the traditional solutions to increasing the TMR ratio are to choose different material combin...
Saved in:
Published in: | Applied physics letters 2024-11, Vol.125 (22) |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c182t-f79fa688157070f1a336eb76cb0961dcf262d13ed1412a287cd007a80ec900933 |
container_end_page | |
container_issue | 22 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 125 |
creator | Zheng, Xiaohong Yang, Shili Zheng, Zhifan Liu, Chun-Sheng Wang, Weiyang Zhang, Lei |
description | Tunnel magnetoresistance (TMR) ratio is a key parameter characterizing the performance of a magnetic tunnel junction (MTJ), and a large TMR ratio is essential for the practical application of it. Generally, the traditional solutions to increasing the TMR ratio are to choose different material combinations as the ferromagnetic (FM) leads and nonmagnetic tunnel barrier. In this work, we study an architecture of MTJs of “FM/barrier/FM/barrier/FM” with double barriers, in contrast to the traditional single barrier structure “FM/barrier/FM.” We first analytically show that double barrier MTJ will generally have much higher TMR ratio than the single barrier MTJ and then substantiate it with the well-known example of “Fe/MgO/Fe” MTJ. Based on density functional calculations combined with nonequilibrium Green's function technique for quantum transport study, in the single barrier “Fe/MgO/Fe” MTJ, the TMR ratio is obtained as 122%, while in the double barrier “Fe/MgO/Fe/MgO/Fe” MTJ, it is greatly increased to 802%, suggesting that double barrier design can greatly enhance the TMR and can be taken into consideration in the design of MTJs. |
doi_str_mv | 10.1063/5.0235559 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0235559</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3132666745</sourcerecordid><originalsourceid>FETCH-LOGICAL-c182t-f79fa688157070f1a336eb76cb0961dcf262d13ed1412a287cd007a80ec900933</originalsourceid><addsrcrecordid>eNp90E1LxDAQBuAgCtbVg_-g4Emh60yySdqjrJ-wsBc9hzRN3SzddE1SxH9vl65XT8MwDzPMS8g1whxBsHs-B8o459UJyRCkLBhieUoyAGCFqDiek4sYt2PLKWMZWT_2Q93ZotYhOBvynf70NjmTp8F72-XbwZvkeh_zb5c2ufUb7Y1t_sYT74ONLqbD5JKctbqL9upYZ-Tj-el9-Vqs1i9vy4dVYbCkqWhl1WpRlsglSGhRMyZsLYWpoRLYmJYK2iCzDS6QalpK0wBIXYI1FUDF2IzcTHv3of8abExq2w_BjycVQ0aFEHLBR3U7KRP6GINt1T64nQ4_CkEd8lJcHfMa7d1ko3FJH37-B_8Cg61qJQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3132666745</pqid></control><display><type>article</type><title>Double-barrier magnetic tunnel junctions with enhanced tunnel magnetoresistance</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>American Institute of Physics</source><creator>Zheng, Xiaohong ; Yang, Shili ; Zheng, Zhifan ; Liu, Chun-Sheng ; Wang, Weiyang ; Zhang, Lei</creator><creatorcontrib>Zheng, Xiaohong ; Yang, Shili ; Zheng, Zhifan ; Liu, Chun-Sheng ; Wang, Weiyang ; Zhang, Lei</creatorcontrib><description>Tunnel magnetoresistance (TMR) ratio is a key parameter characterizing the performance of a magnetic tunnel junction (MTJ), and a large TMR ratio is essential for the practical application of it. Generally, the traditional solutions to increasing the TMR ratio are to choose different material combinations as the ferromagnetic (FM) leads and nonmagnetic tunnel barrier. In this work, we study an architecture of MTJs of “FM/barrier/FM/barrier/FM” with double barriers, in contrast to the traditional single barrier structure “FM/barrier/FM.” We first analytically show that double barrier MTJ will generally have much higher TMR ratio than the single barrier MTJ and then substantiate it with the well-known example of “Fe/MgO/Fe” MTJ. Based on density functional calculations combined with nonequilibrium Green's function technique for quantum transport study, in the single barrier “Fe/MgO/Fe” MTJ, the TMR ratio is obtained as 122%, while in the double barrier “Fe/MgO/Fe/MgO/Fe” MTJ, it is greatly increased to 802%, suggesting that double barrier design can greatly enhance the TMR and can be taken into consideration in the design of MTJs.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0235559</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Ferromagnetic materials ; Green's functions ; Magnesium oxide ; Magnetoresistivity ; Quantum transport ; Tunnel junctions ; Tunnel magnetoresistance</subject><ispartof>Applied physics letters, 2024-11, Vol.125 (22)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c182t-f79fa688157070f1a336eb76cb0961dcf262d13ed1412a287cd007a80ec900933</cites><orcidid>0009-0009-2769-5977 ; 0000-0002-3027-1042 ; 0000-0002-8634-8037 ; 0000-0001-8856-9581</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0235559$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,778,780,791,27903,27904,76129</link.rule.ids></links><search><creatorcontrib>Zheng, Xiaohong</creatorcontrib><creatorcontrib>Yang, Shili</creatorcontrib><creatorcontrib>Zheng, Zhifan</creatorcontrib><creatorcontrib>Liu, Chun-Sheng</creatorcontrib><creatorcontrib>Wang, Weiyang</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><title>Double-barrier magnetic tunnel junctions with enhanced tunnel magnetoresistance</title><title>Applied physics letters</title><description>Tunnel magnetoresistance (TMR) ratio is a key parameter characterizing the performance of a magnetic tunnel junction (MTJ), and a large TMR ratio is essential for the practical application of it. Generally, the traditional solutions to increasing the TMR ratio are to choose different material combinations as the ferromagnetic (FM) leads and nonmagnetic tunnel barrier. In this work, we study an architecture of MTJs of “FM/barrier/FM/barrier/FM” with double barriers, in contrast to the traditional single barrier structure “FM/barrier/FM.” We first analytically show that double barrier MTJ will generally have much higher TMR ratio than the single barrier MTJ and then substantiate it with the well-known example of “Fe/MgO/Fe” MTJ. Based on density functional calculations combined with nonequilibrium Green's function technique for quantum transport study, in the single barrier “Fe/MgO/Fe” MTJ, the TMR ratio is obtained as 122%, while in the double barrier “Fe/MgO/Fe/MgO/Fe” MTJ, it is greatly increased to 802%, suggesting that double barrier design can greatly enhance the TMR and can be taken into consideration in the design of MTJs.</description><subject>Ferromagnetic materials</subject><subject>Green's functions</subject><subject>Magnesium oxide</subject><subject>Magnetoresistivity</subject><subject>Quantum transport</subject><subject>Tunnel junctions</subject><subject>Tunnel magnetoresistance</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp90E1LxDAQBuAgCtbVg_-g4Emh60yySdqjrJ-wsBc9hzRN3SzddE1SxH9vl65XT8MwDzPMS8g1whxBsHs-B8o459UJyRCkLBhieUoyAGCFqDiek4sYt2PLKWMZWT_2Q93ZotYhOBvynf70NjmTp8F72-XbwZvkeh_zb5c2ufUb7Y1t_sYT74ONLqbD5JKctbqL9upYZ-Tj-el9-Vqs1i9vy4dVYbCkqWhl1WpRlsglSGhRMyZsLYWpoRLYmJYK2iCzDS6QalpK0wBIXYI1FUDF2IzcTHv3of8abExq2w_BjycVQ0aFEHLBR3U7KRP6GINt1T64nQ4_CkEd8lJcHfMa7d1ko3FJH37-B_8Cg61qJQ</recordid><startdate>20241125</startdate><enddate>20241125</enddate><creator>Zheng, Xiaohong</creator><creator>Yang, Shili</creator><creator>Zheng, Zhifan</creator><creator>Liu, Chun-Sheng</creator><creator>Wang, Weiyang</creator><creator>Zhang, Lei</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0009-2769-5977</orcidid><orcidid>https://orcid.org/0000-0002-3027-1042</orcidid><orcidid>https://orcid.org/0000-0002-8634-8037</orcidid><orcidid>https://orcid.org/0000-0001-8856-9581</orcidid></search><sort><creationdate>20241125</creationdate><title>Double-barrier magnetic tunnel junctions with enhanced tunnel magnetoresistance</title><author>Zheng, Xiaohong ; Yang, Shili ; Zheng, Zhifan ; Liu, Chun-Sheng ; Wang, Weiyang ; Zhang, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c182t-f79fa688157070f1a336eb76cb0961dcf262d13ed1412a287cd007a80ec900933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ferromagnetic materials</topic><topic>Green's functions</topic><topic>Magnesium oxide</topic><topic>Magnetoresistivity</topic><topic>Quantum transport</topic><topic>Tunnel junctions</topic><topic>Tunnel magnetoresistance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Xiaohong</creatorcontrib><creatorcontrib>Yang, Shili</creatorcontrib><creatorcontrib>Zheng, Zhifan</creatorcontrib><creatorcontrib>Liu, Chun-Sheng</creatorcontrib><creatorcontrib>Wang, Weiyang</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Xiaohong</au><au>Yang, Shili</au><au>Zheng, Zhifan</au><au>Liu, Chun-Sheng</au><au>Wang, Weiyang</au><au>Zhang, Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Double-barrier magnetic tunnel junctions with enhanced tunnel magnetoresistance</atitle><jtitle>Applied physics letters</jtitle><date>2024-11-25</date><risdate>2024</risdate><volume>125</volume><issue>22</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Tunnel magnetoresistance (TMR) ratio is a key parameter characterizing the performance of a magnetic tunnel junction (MTJ), and a large TMR ratio is essential for the practical application of it. Generally, the traditional solutions to increasing the TMR ratio are to choose different material combinations as the ferromagnetic (FM) leads and nonmagnetic tunnel barrier. In this work, we study an architecture of MTJs of “FM/barrier/FM/barrier/FM” with double barriers, in contrast to the traditional single barrier structure “FM/barrier/FM.” We first analytically show that double barrier MTJ will generally have much higher TMR ratio than the single barrier MTJ and then substantiate it with the well-known example of “Fe/MgO/Fe” MTJ. Based on density functional calculations combined with nonequilibrium Green's function technique for quantum transport study, in the single barrier “Fe/MgO/Fe” MTJ, the TMR ratio is obtained as 122%, while in the double barrier “Fe/MgO/Fe/MgO/Fe” MTJ, it is greatly increased to 802%, suggesting that double barrier design can greatly enhance the TMR and can be taken into consideration in the design of MTJs.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0235559</doi><tpages>6</tpages><orcidid>https://orcid.org/0009-0009-2769-5977</orcidid><orcidid>https://orcid.org/0000-0002-3027-1042</orcidid><orcidid>https://orcid.org/0000-0002-8634-8037</orcidid><orcidid>https://orcid.org/0000-0001-8856-9581</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2024-11, Vol.125 (22) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_crossref_primary_10_1063_5_0235559 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); American Institute of Physics |
subjects | Ferromagnetic materials Green's functions Magnesium oxide Magnetoresistivity Quantum transport Tunnel junctions Tunnel magnetoresistance |
title | Double-barrier magnetic tunnel junctions with enhanced tunnel magnetoresistance |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A28%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Double-barrier%20magnetic%20tunnel%20junctions%20with%20enhanced%20tunnel%20magnetoresistance&rft.jtitle=Applied%20physics%20letters&rft.au=Zheng,%20Xiaohong&rft.date=2024-11-25&rft.volume=125&rft.issue=22&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0235559&rft_dat=%3Cproquest_cross%3E3132666745%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c182t-f79fa688157070f1a336eb76cb0961dcf262d13ed1412a287cd007a80ec900933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3132666745&rft_id=info:pmid/&rfr_iscdi=true |