Loading…

Double-barrier magnetic tunnel junctions with enhanced tunnel magnetoresistance

Tunnel magnetoresistance (TMR) ratio is a key parameter characterizing the performance of a magnetic tunnel junction (MTJ), and a large TMR ratio is essential for the practical application of it. Generally, the traditional solutions to increasing the TMR ratio are to choose different material combin...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2024-11, Vol.125 (22)
Main Authors: Zheng, Xiaohong, Yang, Shili, Zheng, Zhifan, Liu, Chun-Sheng, Wang, Weiyang, Zhang, Lei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c182t-f79fa688157070f1a336eb76cb0961dcf262d13ed1412a287cd007a80ec900933
container_end_page
container_issue 22
container_start_page
container_title Applied physics letters
container_volume 125
creator Zheng, Xiaohong
Yang, Shili
Zheng, Zhifan
Liu, Chun-Sheng
Wang, Weiyang
Zhang, Lei
description Tunnel magnetoresistance (TMR) ratio is a key parameter characterizing the performance of a magnetic tunnel junction (MTJ), and a large TMR ratio is essential for the practical application of it. Generally, the traditional solutions to increasing the TMR ratio are to choose different material combinations as the ferromagnetic (FM) leads and nonmagnetic tunnel barrier. In this work, we study an architecture of MTJs of “FM/barrier/FM/barrier/FM” with double barriers, in contrast to the traditional single barrier structure “FM/barrier/FM.” We first analytically show that double barrier MTJ will generally have much higher TMR ratio than the single barrier MTJ and then substantiate it with the well-known example of “Fe/MgO/Fe” MTJ. Based on density functional calculations combined with nonequilibrium Green's function technique for quantum transport study, in the single barrier “Fe/MgO/Fe” MTJ, the TMR ratio is obtained as 122%, while in the double barrier “Fe/MgO/Fe/MgO/Fe” MTJ, it is greatly increased to 802%, suggesting that double barrier design can greatly enhance the TMR and can be taken into consideration in the design of MTJs.
doi_str_mv 10.1063/5.0235559
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0235559</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3132666745</sourcerecordid><originalsourceid>FETCH-LOGICAL-c182t-f79fa688157070f1a336eb76cb0961dcf262d13ed1412a287cd007a80ec900933</originalsourceid><addsrcrecordid>eNp90E1LxDAQBuAgCtbVg_-g4Emh60yySdqjrJ-wsBc9hzRN3SzddE1SxH9vl65XT8MwDzPMS8g1whxBsHs-B8o459UJyRCkLBhieUoyAGCFqDiek4sYt2PLKWMZWT_2Q93ZotYhOBvynf70NjmTp8F72-XbwZvkeh_zb5c2ufUb7Y1t_sYT74ONLqbD5JKctbqL9upYZ-Tj-el9-Vqs1i9vy4dVYbCkqWhl1WpRlsglSGhRMyZsLYWpoRLYmJYK2iCzDS6QalpK0wBIXYI1FUDF2IzcTHv3of8abExq2w_BjycVQ0aFEHLBR3U7KRP6GINt1T64nQ4_CkEd8lJcHfMa7d1ko3FJH37-B_8Cg61qJQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3132666745</pqid></control><display><type>article</type><title>Double-barrier magnetic tunnel junctions with enhanced tunnel magnetoresistance</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>American Institute of Physics</source><creator>Zheng, Xiaohong ; Yang, Shili ; Zheng, Zhifan ; Liu, Chun-Sheng ; Wang, Weiyang ; Zhang, Lei</creator><creatorcontrib>Zheng, Xiaohong ; Yang, Shili ; Zheng, Zhifan ; Liu, Chun-Sheng ; Wang, Weiyang ; Zhang, Lei</creatorcontrib><description>Tunnel magnetoresistance (TMR) ratio is a key parameter characterizing the performance of a magnetic tunnel junction (MTJ), and a large TMR ratio is essential for the practical application of it. Generally, the traditional solutions to increasing the TMR ratio are to choose different material combinations as the ferromagnetic (FM) leads and nonmagnetic tunnel barrier. In this work, we study an architecture of MTJs of “FM/barrier/FM/barrier/FM” with double barriers, in contrast to the traditional single barrier structure “FM/barrier/FM.” We first analytically show that double barrier MTJ will generally have much higher TMR ratio than the single barrier MTJ and then substantiate it with the well-known example of “Fe/MgO/Fe” MTJ. Based on density functional calculations combined with nonequilibrium Green's function technique for quantum transport study, in the single barrier “Fe/MgO/Fe” MTJ, the TMR ratio is obtained as 122%, while in the double barrier “Fe/MgO/Fe/MgO/Fe” MTJ, it is greatly increased to 802%, suggesting that double barrier design can greatly enhance the TMR and can be taken into consideration in the design of MTJs.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0235559</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Ferromagnetic materials ; Green's functions ; Magnesium oxide ; Magnetoresistivity ; Quantum transport ; Tunnel junctions ; Tunnel magnetoresistance</subject><ispartof>Applied physics letters, 2024-11, Vol.125 (22)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c182t-f79fa688157070f1a336eb76cb0961dcf262d13ed1412a287cd007a80ec900933</cites><orcidid>0009-0009-2769-5977 ; 0000-0002-3027-1042 ; 0000-0002-8634-8037 ; 0000-0001-8856-9581</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0235559$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,778,780,791,27903,27904,76129</link.rule.ids></links><search><creatorcontrib>Zheng, Xiaohong</creatorcontrib><creatorcontrib>Yang, Shili</creatorcontrib><creatorcontrib>Zheng, Zhifan</creatorcontrib><creatorcontrib>Liu, Chun-Sheng</creatorcontrib><creatorcontrib>Wang, Weiyang</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><title>Double-barrier magnetic tunnel junctions with enhanced tunnel magnetoresistance</title><title>Applied physics letters</title><description>Tunnel magnetoresistance (TMR) ratio is a key parameter characterizing the performance of a magnetic tunnel junction (MTJ), and a large TMR ratio is essential for the practical application of it. Generally, the traditional solutions to increasing the TMR ratio are to choose different material combinations as the ferromagnetic (FM) leads and nonmagnetic tunnel barrier. In this work, we study an architecture of MTJs of “FM/barrier/FM/barrier/FM” with double barriers, in contrast to the traditional single barrier structure “FM/barrier/FM.” We first analytically show that double barrier MTJ will generally have much higher TMR ratio than the single barrier MTJ and then substantiate it with the well-known example of “Fe/MgO/Fe” MTJ. Based on density functional calculations combined with nonequilibrium Green's function technique for quantum transport study, in the single barrier “Fe/MgO/Fe” MTJ, the TMR ratio is obtained as 122%, while in the double barrier “Fe/MgO/Fe/MgO/Fe” MTJ, it is greatly increased to 802%, suggesting that double barrier design can greatly enhance the TMR and can be taken into consideration in the design of MTJs.</description><subject>Ferromagnetic materials</subject><subject>Green's functions</subject><subject>Magnesium oxide</subject><subject>Magnetoresistivity</subject><subject>Quantum transport</subject><subject>Tunnel junctions</subject><subject>Tunnel magnetoresistance</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp90E1LxDAQBuAgCtbVg_-g4Emh60yySdqjrJ-wsBc9hzRN3SzddE1SxH9vl65XT8MwDzPMS8g1whxBsHs-B8o459UJyRCkLBhieUoyAGCFqDiek4sYt2PLKWMZWT_2Q93ZotYhOBvynf70NjmTp8F72-XbwZvkeh_zb5c2ufUb7Y1t_sYT74ONLqbD5JKctbqL9upYZ-Tj-el9-Vqs1i9vy4dVYbCkqWhl1WpRlsglSGhRMyZsLYWpoRLYmJYK2iCzDS6QalpK0wBIXYI1FUDF2IzcTHv3of8abExq2w_BjycVQ0aFEHLBR3U7KRP6GINt1T64nQ4_CkEd8lJcHfMa7d1ko3FJH37-B_8Cg61qJQ</recordid><startdate>20241125</startdate><enddate>20241125</enddate><creator>Zheng, Xiaohong</creator><creator>Yang, Shili</creator><creator>Zheng, Zhifan</creator><creator>Liu, Chun-Sheng</creator><creator>Wang, Weiyang</creator><creator>Zhang, Lei</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0009-2769-5977</orcidid><orcidid>https://orcid.org/0000-0002-3027-1042</orcidid><orcidid>https://orcid.org/0000-0002-8634-8037</orcidid><orcidid>https://orcid.org/0000-0001-8856-9581</orcidid></search><sort><creationdate>20241125</creationdate><title>Double-barrier magnetic tunnel junctions with enhanced tunnel magnetoresistance</title><author>Zheng, Xiaohong ; Yang, Shili ; Zheng, Zhifan ; Liu, Chun-Sheng ; Wang, Weiyang ; Zhang, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c182t-f79fa688157070f1a336eb76cb0961dcf262d13ed1412a287cd007a80ec900933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ferromagnetic materials</topic><topic>Green's functions</topic><topic>Magnesium oxide</topic><topic>Magnetoresistivity</topic><topic>Quantum transport</topic><topic>Tunnel junctions</topic><topic>Tunnel magnetoresistance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Xiaohong</creatorcontrib><creatorcontrib>Yang, Shili</creatorcontrib><creatorcontrib>Zheng, Zhifan</creatorcontrib><creatorcontrib>Liu, Chun-Sheng</creatorcontrib><creatorcontrib>Wang, Weiyang</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Xiaohong</au><au>Yang, Shili</au><au>Zheng, Zhifan</au><au>Liu, Chun-Sheng</au><au>Wang, Weiyang</au><au>Zhang, Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Double-barrier magnetic tunnel junctions with enhanced tunnel magnetoresistance</atitle><jtitle>Applied physics letters</jtitle><date>2024-11-25</date><risdate>2024</risdate><volume>125</volume><issue>22</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Tunnel magnetoresistance (TMR) ratio is a key parameter characterizing the performance of a magnetic tunnel junction (MTJ), and a large TMR ratio is essential for the practical application of it. Generally, the traditional solutions to increasing the TMR ratio are to choose different material combinations as the ferromagnetic (FM) leads and nonmagnetic tunnel barrier. In this work, we study an architecture of MTJs of “FM/barrier/FM/barrier/FM” with double barriers, in contrast to the traditional single barrier structure “FM/barrier/FM.” We first analytically show that double barrier MTJ will generally have much higher TMR ratio than the single barrier MTJ and then substantiate it with the well-known example of “Fe/MgO/Fe” MTJ. Based on density functional calculations combined with nonequilibrium Green's function technique for quantum transport study, in the single barrier “Fe/MgO/Fe” MTJ, the TMR ratio is obtained as 122%, while in the double barrier “Fe/MgO/Fe/MgO/Fe” MTJ, it is greatly increased to 802%, suggesting that double barrier design can greatly enhance the TMR and can be taken into consideration in the design of MTJs.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0235559</doi><tpages>6</tpages><orcidid>https://orcid.org/0009-0009-2769-5977</orcidid><orcidid>https://orcid.org/0000-0002-3027-1042</orcidid><orcidid>https://orcid.org/0000-0002-8634-8037</orcidid><orcidid>https://orcid.org/0000-0001-8856-9581</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2024-11, Vol.125 (22)
issn 0003-6951
1077-3118
language eng
recordid cdi_crossref_primary_10_1063_5_0235559
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); American Institute of Physics
subjects Ferromagnetic materials
Green's functions
Magnesium oxide
Magnetoresistivity
Quantum transport
Tunnel junctions
Tunnel magnetoresistance
title Double-barrier magnetic tunnel junctions with enhanced tunnel magnetoresistance
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A28%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Double-barrier%20magnetic%20tunnel%20junctions%20with%20enhanced%20tunnel%20magnetoresistance&rft.jtitle=Applied%20physics%20letters&rft.au=Zheng,%20Xiaohong&rft.date=2024-11-25&rft.volume=125&rft.issue=22&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0235559&rft_dat=%3Cproquest_cross%3E3132666745%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c182t-f79fa688157070f1a336eb76cb0961dcf262d13ed1412a287cd007a80ec900933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3132666745&rft_id=info:pmid/&rfr_iscdi=true