Loading…

Shear thinning and microstructures of attractive non-Brownian suspensions

Multiple interparticle forces play a crucial role in determining the rheological behavior of particle suspensions. In dense non-Brownian particle suspensions, weak van der Waals attraction between particles is conceived to be responsible for inducing non-linear rheology. This study investigates the...

Full description

Saved in:
Bibliographic Details
Published in:Physics of fluids (1994) 2025-02, Vol.37 (2)
Main Authors: Liang, Yixuan, Wang, Jinhe, Lin, Yuan, Pan, Dingyi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c978-5fe411e3f8069c58ee394fd846cb401fb5c18151cd55b5eb18fbab99db3a279a3
container_end_page
container_issue 2
container_start_page
container_title Physics of fluids (1994)
container_volume 37
creator Liang, Yixuan
Wang, Jinhe
Lin, Yuan
Pan, Dingyi
description Multiple interparticle forces play a crucial role in determining the rheological behavior of particle suspensions. In dense non-Brownian particle suspensions, weak van der Waals attraction between particles is conceived to be responsible for inducing non-linear rheology. This study investigates the effects of attraction using numerical simulations that account for hydrodynamic, attractive, and frictional contact forces. The results reveal that the shear-thinning behavior becomes increasingly pronounced in steady shear with the increasing strength of attraction. Although this attraction is relatively weak compared to dominant contact forces, it indirectly modulates shear-thinning by controlling the size of particle clusters. Based on this mechanism, we propose a renormalized stress to account for the shear-thinning curves of attractive suspensions with varying attraction strengths. By imposing oscillatory shear on attractive particle suspensions, we demonstrate another frequency-dependent mechanism of shear-thinning behavior, which results in a deviation from the Cox–Merz law. As the frequency increases, the attractive suspensions undergo a transition from a contact-dominated state to a hydrodynamic-dominated state, where the motion of the particles is confined to small regions, forming hydrodynamic pairs that contribute to the complex viscosity in an unignorable way.
doi_str_mv 10.1063/5.0252328
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0252328</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3168108438</sourcerecordid><originalsourceid>FETCH-LOGICAL-c978-5fe411e3f8069c58ee394fd846cb401fb5c18151cd55b5eb18fbab99db3a279a3</originalsourceid><addsrcrecordid>eNp9kE1PAyEURYnRxFpd-A9IXGkyFYaBgaU2fjRp4sLuCTBgaSxUYDT-e2cyXbu6d3HyXs4F4BqjBUaM3NMFqmlNan4CZhhxUbWMsdOxt6hijOBzcJHzDiFERM1mYPW-tSrBsvUh-PABVejg3psUc0m9KX2yGUYHVSlJmeK_LQwxVI8p_gSvAsx9PtiQfQz5Epw59Znt1THnYPP8tFm-Vuu3l9XyYV0Z0fKKOttgbInjiAlDubVENK7jDTO6QdhpajDHFJuOUk2txtxppYXoNFF1KxSZg5vp7CHFr97mInexT2H4KAlmfHBuCB-o24kaTXKyTh6S36v0KzGS41CSyuNQA3s3sdn4osrg8g_8B8_SaK0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3168108438</pqid></control><display><type>article</type><title>Shear thinning and microstructures of attractive non-Brownian suspensions</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP_美国物理联合会期刊回溯(NSTL购买)</source><creator>Liang, Yixuan ; Wang, Jinhe ; Lin, Yuan ; Pan, Dingyi</creator><creatorcontrib>Liang, Yixuan ; Wang, Jinhe ; Lin, Yuan ; Pan, Dingyi</creatorcontrib><description>Multiple interparticle forces play a crucial role in determining the rheological behavior of particle suspensions. In dense non-Brownian particle suspensions, weak van der Waals attraction between particles is conceived to be responsible for inducing non-linear rheology. This study investigates the effects of attraction using numerical simulations that account for hydrodynamic, attractive, and frictional contact forces. The results reveal that the shear-thinning behavior becomes increasingly pronounced in steady shear with the increasing strength of attraction. Although this attraction is relatively weak compared to dominant contact forces, it indirectly modulates shear-thinning by controlling the size of particle clusters. Based on this mechanism, we propose a renormalized stress to account for the shear-thinning curves of attractive suspensions with varying attraction strengths. By imposing oscillatory shear on attractive particle suspensions, we demonstrate another frequency-dependent mechanism of shear-thinning behavior, which results in a deviation from the Cox–Merz law. As the frequency increases, the attractive suspensions undergo a transition from a contact-dominated state to a hydrodynamic-dominated state, where the motion of the particles is confined to small regions, forming hydrodynamic pairs that contribute to the complex viscosity in an unignorable way.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0252328</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Attraction ; Contact force ; Contact stresses ; Rheological properties ; Rheology ; Shear ; Shear thinning (liquids)</subject><ispartof>Physics of fluids (1994), 2025-02, Vol.37 (2)</ispartof><rights>Author(s)</rights><rights>2025 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c978-5fe411e3f8069c58ee394fd846cb401fb5c18151cd55b5eb18fbab99db3a279a3</cites><orcidid>0000-0002-2527-9066 ; 0000-0002-4804-2942 ; 0009-0008-0891-1219 ; 0000-0003-2605-2901</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1553,27901,27902</link.rule.ids></links><search><creatorcontrib>Liang, Yixuan</creatorcontrib><creatorcontrib>Wang, Jinhe</creatorcontrib><creatorcontrib>Lin, Yuan</creatorcontrib><creatorcontrib>Pan, Dingyi</creatorcontrib><title>Shear thinning and microstructures of attractive non-Brownian suspensions</title><title>Physics of fluids (1994)</title><description>Multiple interparticle forces play a crucial role in determining the rheological behavior of particle suspensions. In dense non-Brownian particle suspensions, weak van der Waals attraction between particles is conceived to be responsible for inducing non-linear rheology. This study investigates the effects of attraction using numerical simulations that account for hydrodynamic, attractive, and frictional contact forces. The results reveal that the shear-thinning behavior becomes increasingly pronounced in steady shear with the increasing strength of attraction. Although this attraction is relatively weak compared to dominant contact forces, it indirectly modulates shear-thinning by controlling the size of particle clusters. Based on this mechanism, we propose a renormalized stress to account for the shear-thinning curves of attractive suspensions with varying attraction strengths. By imposing oscillatory shear on attractive particle suspensions, we demonstrate another frequency-dependent mechanism of shear-thinning behavior, which results in a deviation from the Cox–Merz law. As the frequency increases, the attractive suspensions undergo a transition from a contact-dominated state to a hydrodynamic-dominated state, where the motion of the particles is confined to small regions, forming hydrodynamic pairs that contribute to the complex viscosity in an unignorable way.</description><subject>Attraction</subject><subject>Contact force</subject><subject>Contact stresses</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Shear</subject><subject>Shear thinning (liquids)</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PAyEURYnRxFpd-A9IXGkyFYaBgaU2fjRp4sLuCTBgaSxUYDT-e2cyXbu6d3HyXs4F4BqjBUaM3NMFqmlNan4CZhhxUbWMsdOxt6hijOBzcJHzDiFERM1mYPW-tSrBsvUh-PABVejg3psUc0m9KX2yGUYHVSlJmeK_LQwxVI8p_gSvAsx9PtiQfQz5Epw59Znt1THnYPP8tFm-Vuu3l9XyYV0Z0fKKOttgbInjiAlDubVENK7jDTO6QdhpajDHFJuOUk2txtxppYXoNFF1KxSZg5vp7CHFr97mInexT2H4KAlmfHBuCB-o24kaTXKyTh6S36v0KzGS41CSyuNQA3s3sdn4osrg8g_8B8_SaK0</recordid><startdate>202502</startdate><enddate>202502</enddate><creator>Liang, Yixuan</creator><creator>Wang, Jinhe</creator><creator>Lin, Yuan</creator><creator>Pan, Dingyi</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2527-9066</orcidid><orcidid>https://orcid.org/0000-0002-4804-2942</orcidid><orcidid>https://orcid.org/0009-0008-0891-1219</orcidid><orcidid>https://orcid.org/0000-0003-2605-2901</orcidid></search><sort><creationdate>202502</creationdate><title>Shear thinning and microstructures of attractive non-Brownian suspensions</title><author>Liang, Yixuan ; Wang, Jinhe ; Lin, Yuan ; Pan, Dingyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c978-5fe411e3f8069c58ee394fd846cb401fb5c18151cd55b5eb18fbab99db3a279a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Attraction</topic><topic>Contact force</topic><topic>Contact stresses</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Shear</topic><topic>Shear thinning (liquids)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Yixuan</creatorcontrib><creatorcontrib>Wang, Jinhe</creatorcontrib><creatorcontrib>Lin, Yuan</creatorcontrib><creatorcontrib>Pan, Dingyi</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Yixuan</au><au>Wang, Jinhe</au><au>Lin, Yuan</au><au>Pan, Dingyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shear thinning and microstructures of attractive non-Brownian suspensions</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2025-02</date><risdate>2025</risdate><volume>37</volume><issue>2</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>Multiple interparticle forces play a crucial role in determining the rheological behavior of particle suspensions. In dense non-Brownian particle suspensions, weak van der Waals attraction between particles is conceived to be responsible for inducing non-linear rheology. This study investigates the effects of attraction using numerical simulations that account for hydrodynamic, attractive, and frictional contact forces. The results reveal that the shear-thinning behavior becomes increasingly pronounced in steady shear with the increasing strength of attraction. Although this attraction is relatively weak compared to dominant contact forces, it indirectly modulates shear-thinning by controlling the size of particle clusters. Based on this mechanism, we propose a renormalized stress to account for the shear-thinning curves of attractive suspensions with varying attraction strengths. By imposing oscillatory shear on attractive particle suspensions, we demonstrate another frequency-dependent mechanism of shear-thinning behavior, which results in a deviation from the Cox–Merz law. As the frequency increases, the attractive suspensions undergo a transition from a contact-dominated state to a hydrodynamic-dominated state, where the motion of the particles is confined to small regions, forming hydrodynamic pairs that contribute to the complex viscosity in an unignorable way.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0252328</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2527-9066</orcidid><orcidid>https://orcid.org/0000-0002-4804-2942</orcidid><orcidid>https://orcid.org/0009-0008-0891-1219</orcidid><orcidid>https://orcid.org/0000-0003-2605-2901</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2025-02, Vol.37 (2)
issn 1070-6631
1089-7666
language eng
recordid cdi_crossref_primary_10_1063_5_0252328
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP_美国物理联合会期刊回溯(NSTL购买)
subjects Attraction
Contact force
Contact stresses
Rheological properties
Rheology
Shear
Shear thinning (liquids)
title Shear thinning and microstructures of attractive non-Brownian suspensions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T07%3A22%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shear%20thinning%20and%20microstructures%20of%20attractive%20non-Brownian%20suspensions&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Liang,%20Yixuan&rft.date=2025-02&rft.volume=37&rft.issue=2&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0252328&rft_dat=%3Cproquest_cross%3E3168108438%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c978-5fe411e3f8069c58ee394fd846cb401fb5c18151cd55b5eb18fbab99db3a279a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3168108438&rft_id=info:pmid/&rfr_iscdi=true