Loading…
Naturally graded Lie algebras of slow growth
A pro-nilpotent Lie algebra is said to be naturally graded if it is isomorphic to its associated graded Lie algebra with respect to the filtration by the ideals in the lower central series. Finite-dimensional naturally graded Lie algebras are known in sub-Riemannian geometry and geometric control th...
Saved in:
Published in: | Sbornik. Mathematics 2019-06, Vol.210 (6), p.862-909 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c278t-7045be81dc2212b2063fa516bb43cab87114b54f468d49619270c8b5c3e16c123 |
---|---|
cites | cdi_FETCH-LOGICAL-c278t-7045be81dc2212b2063fa516bb43cab87114b54f468d49619270c8b5c3e16c123 |
container_end_page | 909 |
container_issue | 6 |
container_start_page | 862 |
container_title | Sbornik. Mathematics |
container_volume | 210 |
creator | Millionshchikov, D. V. |
description | A pro-nilpotent Lie algebra is said to be naturally graded if it is isomorphic to its associated graded Lie algebra with respect to the filtration by the ideals in the lower central series. Finite-dimensional naturally graded Lie algebras are known in sub-Riemannian geometry and geometric control theory, where they are called Carnot algebras. We classify the finite-dimensional and infinite-dimensional naturally graded Lie algebras with the property An arbitrary Lie algebra of this class is generated by the two- dimensional subspace , and the corresponding growth function satisfies the bound . Bibliography: 32 titles. |
doi_str_mv | 10.1070/SM9055 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1070_SM9055</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2357589765</sourcerecordid><originalsourceid>FETCH-LOGICAL-c278t-7045be81dc2212b2063fa516bb43cab87114b54f468d49619270c8b5c3e16c123</originalsourceid><addsrcrecordid>eNpdkEtLxDAUhYMoOI76G4qCK6v3pnl1KcP4gKoLdV2SNB07VDMmLcP8eyMVBFf3wP0453AIOUW4QpBw_fJYAud7ZIZMqJwpoPtJg2A5FygOyVGMawDgFNWMXD7pYQy673fZKujGNVnVuUz3K2eCjplvs9j7bfr57fB-TA5a3Ud38nvn5O12-bq4z6vnu4fFTZVbKtWQS2DcOIWNpRSpoSCKVnMUxrDCaqMkIjOctalew0qBJZVgleG2cCgs0mJOziffTfBfo4tDvfZj-EyRNS245KqUgifqYqJs8DEG19ab0H3osKsR6p8l6mmJBJ5NYOc3f07_oG9l5VgA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2357589765</pqid></control><display><type>article</type><title>Naturally graded Lie algebras of slow growth</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Millionshchikov, D. V.</creator><creatorcontrib>Millionshchikov, D. V.</creatorcontrib><description>A pro-nilpotent Lie algebra is said to be naturally graded if it is isomorphic to its associated graded Lie algebra with respect to the filtration by the ideals in the lower central series. Finite-dimensional naturally graded Lie algebras are known in sub-Riemannian geometry and geometric control theory, where they are called Carnot algebras. We classify the finite-dimensional and infinite-dimensional naturally graded Lie algebras with the property An arbitrary Lie algebra of this class is generated by the two- dimensional subspace , and the corresponding growth function satisfies the bound . Bibliography: 32 titles.</description><identifier>ISSN: 1064-5616</identifier><identifier>EISSN: 1468-4802</identifier><identifier>DOI: 10.1070/SM9055</identifier><language>eng</language><publisher>Providence: London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</publisher><subject>Algebra ; automorphism ; Carnot algebra ; central extension ; Control theory ; graded Lie algebra ; Kac-Moody algebras ; Lie groups ; Series (mathematics)</subject><ispartof>Sbornik. Mathematics, 2019-06, Vol.210 (6), p.862-909</ispartof><rights>2019 Russian Academy of Sciences (DoM), London Mathematical Society, Turpion Ltd.</rights><rights>Copyright IOP Publishing Jun 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c278t-7045be81dc2212b2063fa516bb43cab87114b54f468d49619270c8b5c3e16c123</citedby><cites>FETCH-LOGICAL-c278t-7045be81dc2212b2063fa516bb43cab87114b54f468d49619270c8b5c3e16c123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Millionshchikov, D. V.</creatorcontrib><title>Naturally graded Lie algebras of slow growth</title><title>Sbornik. Mathematics</title><addtitle>MSB</addtitle><addtitle>Sb. Math</addtitle><description>A pro-nilpotent Lie algebra is said to be naturally graded if it is isomorphic to its associated graded Lie algebra with respect to the filtration by the ideals in the lower central series. Finite-dimensional naturally graded Lie algebras are known in sub-Riemannian geometry and geometric control theory, where they are called Carnot algebras. We classify the finite-dimensional and infinite-dimensional naturally graded Lie algebras with the property An arbitrary Lie algebra of this class is generated by the two- dimensional subspace , and the corresponding growth function satisfies the bound . Bibliography: 32 titles.</description><subject>Algebra</subject><subject>automorphism</subject><subject>Carnot algebra</subject><subject>central extension</subject><subject>Control theory</subject><subject>graded Lie algebra</subject><subject>Kac-Moody algebras</subject><subject>Lie groups</subject><subject>Series (mathematics)</subject><issn>1064-5616</issn><issn>1468-4802</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkEtLxDAUhYMoOI76G4qCK6v3pnl1KcP4gKoLdV2SNB07VDMmLcP8eyMVBFf3wP0453AIOUW4QpBw_fJYAud7ZIZMqJwpoPtJg2A5FygOyVGMawDgFNWMXD7pYQy673fZKujGNVnVuUz3K2eCjplvs9j7bfr57fB-TA5a3Ud38nvn5O12-bq4z6vnu4fFTZVbKtWQS2DcOIWNpRSpoSCKVnMUxrDCaqMkIjOctalew0qBJZVgleG2cCgs0mJOziffTfBfo4tDvfZj-EyRNS245KqUgifqYqJs8DEG19ab0H3osKsR6p8l6mmJBJ5NYOc3f07_oG9l5VgA</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Millionshchikov, D. V.</creator><general>London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20190601</creationdate><title>Naturally graded Lie algebras of slow growth</title><author>Millionshchikov, D. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c278t-7045be81dc2212b2063fa516bb43cab87114b54f468d49619270c8b5c3e16c123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algebra</topic><topic>automorphism</topic><topic>Carnot algebra</topic><topic>central extension</topic><topic>Control theory</topic><topic>graded Lie algebra</topic><topic>Kac-Moody algebras</topic><topic>Lie groups</topic><topic>Series (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Millionshchikov, D. V.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sbornik. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Millionshchikov, D. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Naturally graded Lie algebras of slow growth</atitle><jtitle>Sbornik. Mathematics</jtitle><stitle>MSB</stitle><addtitle>Sb. Math</addtitle><date>2019-06-01</date><risdate>2019</risdate><volume>210</volume><issue>6</issue><spage>862</spage><epage>909</epage><pages>862-909</pages><issn>1064-5616</issn><eissn>1468-4802</eissn><abstract>A pro-nilpotent Lie algebra is said to be naturally graded if it is isomorphic to its associated graded Lie algebra with respect to the filtration by the ideals in the lower central series. Finite-dimensional naturally graded Lie algebras are known in sub-Riemannian geometry and geometric control theory, where they are called Carnot algebras. We classify the finite-dimensional and infinite-dimensional naturally graded Lie algebras with the property An arbitrary Lie algebra of this class is generated by the two- dimensional subspace , and the corresponding growth function satisfies the bound . Bibliography: 32 titles.</abstract><cop>Providence</cop><pub>London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</pub><doi>10.1070/SM9055</doi><tpages>48</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-5616 |
ispartof | Sbornik. Mathematics, 2019-06, Vol.210 (6), p.862-909 |
issn | 1064-5616 1468-4802 |
language | eng |
recordid | cdi_crossref_primary_10_1070_SM9055 |
source | Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List) |
subjects | Algebra automorphism Carnot algebra central extension Control theory graded Lie algebra Kac-Moody algebras Lie groups Series (mathematics) |
title | Naturally graded Lie algebras of slow growth |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A32%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Naturally%20graded%20Lie%20algebras%20of%20slow%20growth&rft.jtitle=Sbornik.%20Mathematics&rft.au=Millionshchikov,%20D.%20V.&rft.date=2019-06-01&rft.volume=210&rft.issue=6&rft.spage=862&rft.epage=909&rft.pages=862-909&rft.issn=1064-5616&rft.eissn=1468-4802&rft_id=info:doi/10.1070/SM9055&rft_dat=%3Cproquest_cross%3E2357589765%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c278t-7045be81dc2212b2063fa516bb43cab87114b54f468d49619270c8b5c3e16c123%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2357589765&rft_id=info:pmid/&rfr_iscdi=true |