Loading…
Some arithmetic properties of the values of entire functions of finite order and their first derivatives
We describe a class of entire functions of finite order which, together with their first derivative, take sufficiently many algebraic values (with certain restrictions on the growth of the degree and height of these values). We show that, under certain conditions, any such function is a rational fun...
Saved in:
Published in: | Sbornik. Mathematics 2019-12, Vol.210 (12), p.1788-1802 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c310t-53dab17912876426e4d35751054377f38ff1648b6df543428ffa0a74bf4f167a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c310t-53dab17912876426e4d35751054377f38ff1648b6df543428ffa0a74bf4f167a3 |
container_end_page | 1802 |
container_issue | 12 |
container_start_page | 1788 |
container_title | Sbornik. Mathematics |
container_volume | 210 |
creator | Yanchenko, A. Ya |
description | We describe a class of entire functions of finite order which, together with their first derivative, take sufficiently many algebraic values (with certain restrictions on the growth of the degree and height of these values). We show that, under certain conditions, any such function is a rational function of special form of an exponential. For entire functions of finite order which are not representable in the form of a finite linear combination of exponentials, we obtain an estimate for the number of points (in any fixed disc) at which the values of the function itself and its first derivative are algebraic numbers of bounded degree and height. Bibliography: 8 titles. |
doi_str_mv | 10.1070/SM9145 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1070_SM9145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2390169313</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-53dab17912876426e4d35751054377f38ff1648b6df543428ffa0a74bf4f167a3</originalsourceid><addsrcrecordid>eNptkEtLAzEUhYMoWKv-hqCgq9G8k1lq8QUtLqrrkM4kNKWdjEla8N-bOoIgrpJ78uXcew8A5xjdYCTR7XxWY8YPwAgzoSqmEDksdyRYxQUWx-AkpRVCiBOsRmA5DxsLTfR5ubHZN7CPobcxe5tgcDAvLdyZ9XaobJd9tNBtuyb70H1rznc-WxhiayM0Xbv_4mORY8qwaH5nst_ZdAqOnFkne_ZzjsH748Pb5Lmavj69TO6mVUMxyhWnrVlgWWOipGBEWNZSLjlGnFEpHVXOYcHUQrSuKIyU2iAj2cKx8iANHYPLwbcs8lHmznoVtrErLTWhNcKippgW6mqgmhhSitbpPvqNiZ8aI71PUQ8pFvB6AH3of51m83tN9iTRWCql-9YV8uIf8o_dF2zge8w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2390169313</pqid></control><display><type>article</type><title>Some arithmetic properties of the values of entire functions of finite order and their first derivatives</title><source>Institute of Physics</source><creator>Yanchenko, A. Ya</creator><creatorcontrib>Yanchenko, A. Ya</creatorcontrib><description>We describe a class of entire functions of finite order which, together with their first derivative, take sufficiently many algebraic values (with certain restrictions on the growth of the degree and height of these values). We show that, under certain conditions, any such function is a rational function of special form of an exponential. For entire functions of finite order which are not representable in the form of a finite linear combination of exponentials, we obtain an estimate for the number of points (in any fixed disc) at which the values of the function itself and its first derivative are algebraic numbers of bounded degree and height. Bibliography: 8 titles.</description><identifier>ISSN: 1064-5616</identifier><identifier>EISSN: 1468-4802</identifier><identifier>DOI: 10.1070/SM9145</identifier><language>eng</language><publisher>Providence: London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</publisher><subject>Algebra ; algebraic values ; derivative ; entire function of finite order ; Entire functions ; exponentials ; Mathematical analysis ; Rational functions</subject><ispartof>Sbornik. Mathematics, 2019-12, Vol.210 (12), p.1788-1802</ispartof><rights>2019 Russian Academy of Sciences (DoM) and London Mathematical Society</rights><rights>Copyright IOP Publishing Dec 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c310t-53dab17912876426e4d35751054377f38ff1648b6df543428ffa0a74bf4f167a3</citedby><cites>FETCH-LOGICAL-c310t-53dab17912876426e4d35751054377f38ff1648b6df543428ffa0a74bf4f167a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yanchenko, A. Ya</creatorcontrib><title>Some arithmetic properties of the values of entire functions of finite order and their first derivatives</title><title>Sbornik. Mathematics</title><addtitle>MSB</addtitle><addtitle>Sb. Math</addtitle><description>We describe a class of entire functions of finite order which, together with their first derivative, take sufficiently many algebraic values (with certain restrictions on the growth of the degree and height of these values). We show that, under certain conditions, any such function is a rational function of special form of an exponential. For entire functions of finite order which are not representable in the form of a finite linear combination of exponentials, we obtain an estimate for the number of points (in any fixed disc) at which the values of the function itself and its first derivative are algebraic numbers of bounded degree and height. Bibliography: 8 titles.</description><subject>Algebra</subject><subject>algebraic values</subject><subject>derivative</subject><subject>entire function of finite order</subject><subject>Entire functions</subject><subject>exponentials</subject><subject>Mathematical analysis</subject><subject>Rational functions</subject><issn>1064-5616</issn><issn>1468-4802</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNptkEtLAzEUhYMoWKv-hqCgq9G8k1lq8QUtLqrrkM4kNKWdjEla8N-bOoIgrpJ78uXcew8A5xjdYCTR7XxWY8YPwAgzoSqmEDksdyRYxQUWx-AkpRVCiBOsRmA5DxsLTfR5ubHZN7CPobcxe5tgcDAvLdyZ9XaobJd9tNBtuyb70H1rznc-WxhiayM0Xbv_4mORY8qwaH5nst_ZdAqOnFkne_ZzjsH748Pb5Lmavj69TO6mVUMxyhWnrVlgWWOipGBEWNZSLjlGnFEpHVXOYcHUQrSuKIyU2iAj2cKx8iANHYPLwbcs8lHmznoVtrErLTWhNcKippgW6mqgmhhSitbpPvqNiZ8aI71PUQ8pFvB6AH3of51m83tN9iTRWCql-9YV8uIf8o_dF2zge8w</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Yanchenko, A. Ya</creator><general>London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20191201</creationdate><title>Some arithmetic properties of the values of entire functions of finite order and their first derivatives</title><author>Yanchenko, A. Ya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-53dab17912876426e4d35751054377f38ff1648b6df543428ffa0a74bf4f167a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algebra</topic><topic>algebraic values</topic><topic>derivative</topic><topic>entire function of finite order</topic><topic>Entire functions</topic><topic>exponentials</topic><topic>Mathematical analysis</topic><topic>Rational functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yanchenko, A. Ya</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sbornik. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yanchenko, A. Ya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some arithmetic properties of the values of entire functions of finite order and their first derivatives</atitle><jtitle>Sbornik. Mathematics</jtitle><stitle>MSB</stitle><addtitle>Sb. Math</addtitle><date>2019-12-01</date><risdate>2019</risdate><volume>210</volume><issue>12</issue><spage>1788</spage><epage>1802</epage><pages>1788-1802</pages><issn>1064-5616</issn><eissn>1468-4802</eissn><abstract>We describe a class of entire functions of finite order which, together with their first derivative, take sufficiently many algebraic values (with certain restrictions on the growth of the degree and height of these values). We show that, under certain conditions, any such function is a rational function of special form of an exponential. For entire functions of finite order which are not representable in the form of a finite linear combination of exponentials, we obtain an estimate for the number of points (in any fixed disc) at which the values of the function itself and its first derivative are algebraic numbers of bounded degree and height. Bibliography: 8 titles.</abstract><cop>Providence</cop><pub>London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</pub><doi>10.1070/SM9145</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-5616 |
ispartof | Sbornik. Mathematics, 2019-12, Vol.210 (12), p.1788-1802 |
issn | 1064-5616 1468-4802 |
language | eng |
recordid | cdi_crossref_primary_10_1070_SM9145 |
source | Institute of Physics |
subjects | Algebra algebraic values derivative entire function of finite order Entire functions exponentials Mathematical analysis Rational functions |
title | Some arithmetic properties of the values of entire functions of finite order and their first derivatives |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A29%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20arithmetic%20properties%20of%20the%20values%20of%20entire%20functions%20of%20finite%20order%20and%20their%20first%20derivatives&rft.jtitle=Sbornik.%20Mathematics&rft.au=Yanchenko,%20A.%20Ya&rft.date=2019-12-01&rft.volume=210&rft.issue=12&rft.spage=1788&rft.epage=1802&rft.pages=1788-1802&rft.issn=1064-5616&rft.eissn=1468-4802&rft_id=info:doi/10.1070/SM9145&rft_dat=%3Cproquest_cross%3E2390169313%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c310t-53dab17912876426e4d35751054377f38ff1648b6df543428ffa0a74bf4f167a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2390169313&rft_id=info:pmid/&rfr_iscdi=true |