Loading…

Some arithmetic properties of the values of entire functions of finite order and their first derivatives

We describe a class of entire functions of finite order which, together with their first derivative, take sufficiently many algebraic values (with certain restrictions on the growth of the degree and height of these values). We show that, under certain conditions, any such function is a rational fun...

Full description

Saved in:
Bibliographic Details
Published in:Sbornik. Mathematics 2019-12, Vol.210 (12), p.1788-1802
Main Author: Yanchenko, A. Ya
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c310t-53dab17912876426e4d35751054377f38ff1648b6df543428ffa0a74bf4f167a3
cites cdi_FETCH-LOGICAL-c310t-53dab17912876426e4d35751054377f38ff1648b6df543428ffa0a74bf4f167a3
container_end_page 1802
container_issue 12
container_start_page 1788
container_title Sbornik. Mathematics
container_volume 210
creator Yanchenko, A. Ya
description We describe a class of entire functions of finite order which, together with their first derivative, take sufficiently many algebraic values (with certain restrictions on the growth of the degree and height of these values). We show that, under certain conditions, any such function is a rational function of special form of an exponential. For entire functions of finite order which are not representable in the form of a finite linear combination of exponentials, we obtain an estimate for the number of points (in any fixed disc) at which the values of the function itself and its first derivative are algebraic numbers of bounded degree and height. Bibliography: 8 titles.
doi_str_mv 10.1070/SM9145
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1070_SM9145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2390169313</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-53dab17912876426e4d35751054377f38ff1648b6df543428ffa0a74bf4f167a3</originalsourceid><addsrcrecordid>eNptkEtLAzEUhYMoWKv-hqCgq9G8k1lq8QUtLqrrkM4kNKWdjEla8N-bOoIgrpJ78uXcew8A5xjdYCTR7XxWY8YPwAgzoSqmEDksdyRYxQUWx-AkpRVCiBOsRmA5DxsLTfR5ubHZN7CPobcxe5tgcDAvLdyZ9XaobJd9tNBtuyb70H1rznc-WxhiayM0Xbv_4mORY8qwaH5nst_ZdAqOnFkne_ZzjsH748Pb5Lmavj69TO6mVUMxyhWnrVlgWWOipGBEWNZSLjlGnFEpHVXOYcHUQrSuKIyU2iAj2cKx8iANHYPLwbcs8lHmznoVtrErLTWhNcKippgW6mqgmhhSitbpPvqNiZ8aI71PUQ8pFvB6AH3of51m83tN9iTRWCql-9YV8uIf8o_dF2zge8w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2390169313</pqid></control><display><type>article</type><title>Some arithmetic properties of the values of entire functions of finite order and their first derivatives</title><source>Institute of Physics</source><creator>Yanchenko, A. Ya</creator><creatorcontrib>Yanchenko, A. Ya</creatorcontrib><description>We describe a class of entire functions of finite order which, together with their first derivative, take sufficiently many algebraic values (with certain restrictions on the growth of the degree and height of these values). We show that, under certain conditions, any such function is a rational function of special form of an exponential. For entire functions of finite order which are not representable in the form of a finite linear combination of exponentials, we obtain an estimate for the number of points (in any fixed disc) at which the values of the function itself and its first derivative are algebraic numbers of bounded degree and height. Bibliography: 8 titles.</description><identifier>ISSN: 1064-5616</identifier><identifier>EISSN: 1468-4802</identifier><identifier>DOI: 10.1070/SM9145</identifier><language>eng</language><publisher>Providence: London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</publisher><subject>Algebra ; algebraic values ; derivative ; entire function of finite order ; Entire functions ; exponentials ; Mathematical analysis ; Rational functions</subject><ispartof>Sbornik. Mathematics, 2019-12, Vol.210 (12), p.1788-1802</ispartof><rights>2019 Russian Academy of Sciences (DoM) and London Mathematical Society</rights><rights>Copyright IOP Publishing Dec 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c310t-53dab17912876426e4d35751054377f38ff1648b6df543428ffa0a74bf4f167a3</citedby><cites>FETCH-LOGICAL-c310t-53dab17912876426e4d35751054377f38ff1648b6df543428ffa0a74bf4f167a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yanchenko, A. Ya</creatorcontrib><title>Some arithmetic properties of the values of entire functions of finite order and their first derivatives</title><title>Sbornik. Mathematics</title><addtitle>MSB</addtitle><addtitle>Sb. Math</addtitle><description>We describe a class of entire functions of finite order which, together with their first derivative, take sufficiently many algebraic values (with certain restrictions on the growth of the degree and height of these values). We show that, under certain conditions, any such function is a rational function of special form of an exponential. For entire functions of finite order which are not representable in the form of a finite linear combination of exponentials, we obtain an estimate for the number of points (in any fixed disc) at which the values of the function itself and its first derivative are algebraic numbers of bounded degree and height. Bibliography: 8 titles.</description><subject>Algebra</subject><subject>algebraic values</subject><subject>derivative</subject><subject>entire function of finite order</subject><subject>Entire functions</subject><subject>exponentials</subject><subject>Mathematical analysis</subject><subject>Rational functions</subject><issn>1064-5616</issn><issn>1468-4802</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNptkEtLAzEUhYMoWKv-hqCgq9G8k1lq8QUtLqrrkM4kNKWdjEla8N-bOoIgrpJ78uXcew8A5xjdYCTR7XxWY8YPwAgzoSqmEDksdyRYxQUWx-AkpRVCiBOsRmA5DxsLTfR5ubHZN7CPobcxe5tgcDAvLdyZ9XaobJd9tNBtuyb70H1rznc-WxhiayM0Xbv_4mORY8qwaH5nst_ZdAqOnFkne_ZzjsH748Pb5Lmavj69TO6mVUMxyhWnrVlgWWOipGBEWNZSLjlGnFEpHVXOYcHUQrSuKIyU2iAj2cKx8iANHYPLwbcs8lHmznoVtrErLTWhNcKippgW6mqgmhhSitbpPvqNiZ8aI71PUQ8pFvB6AH3of51m83tN9iTRWCql-9YV8uIf8o_dF2zge8w</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Yanchenko, A. Ya</creator><general>London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20191201</creationdate><title>Some arithmetic properties of the values of entire functions of finite order and their first derivatives</title><author>Yanchenko, A. Ya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-53dab17912876426e4d35751054377f38ff1648b6df543428ffa0a74bf4f167a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algebra</topic><topic>algebraic values</topic><topic>derivative</topic><topic>entire function of finite order</topic><topic>Entire functions</topic><topic>exponentials</topic><topic>Mathematical analysis</topic><topic>Rational functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yanchenko, A. Ya</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sbornik. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yanchenko, A. Ya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some arithmetic properties of the values of entire functions of finite order and their first derivatives</atitle><jtitle>Sbornik. Mathematics</jtitle><stitle>MSB</stitle><addtitle>Sb. Math</addtitle><date>2019-12-01</date><risdate>2019</risdate><volume>210</volume><issue>12</issue><spage>1788</spage><epage>1802</epage><pages>1788-1802</pages><issn>1064-5616</issn><eissn>1468-4802</eissn><abstract>We describe a class of entire functions of finite order which, together with their first derivative, take sufficiently many algebraic values (with certain restrictions on the growth of the degree and height of these values). We show that, under certain conditions, any such function is a rational function of special form of an exponential. For entire functions of finite order which are not representable in the form of a finite linear combination of exponentials, we obtain an estimate for the number of points (in any fixed disc) at which the values of the function itself and its first derivative are algebraic numbers of bounded degree and height. Bibliography: 8 titles.</abstract><cop>Providence</cop><pub>London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</pub><doi>10.1070/SM9145</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1064-5616
ispartof Sbornik. Mathematics, 2019-12, Vol.210 (12), p.1788-1802
issn 1064-5616
1468-4802
language eng
recordid cdi_crossref_primary_10_1070_SM9145
source Institute of Physics
subjects Algebra
algebraic values
derivative
entire function of finite order
Entire functions
exponentials
Mathematical analysis
Rational functions
title Some arithmetic properties of the values of entire functions of finite order and their first derivatives
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A29%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20arithmetic%20properties%20of%20the%20values%20of%20entire%20functions%20of%20finite%20order%20and%20their%20first%20derivatives&rft.jtitle=Sbornik.%20Mathematics&rft.au=Yanchenko,%20A.%20Ya&rft.date=2019-12-01&rft.volume=210&rft.issue=12&rft.spage=1788&rft.epage=1802&rft.pages=1788-1802&rft.issn=1064-5616&rft.eissn=1468-4802&rft_id=info:doi/10.1070/SM9145&rft_dat=%3Cproquest_cross%3E2390169313%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c310t-53dab17912876426e4d35751054377f38ff1648b6df543428ffa0a74bf4f167a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2390169313&rft_id=info:pmid/&rfr_iscdi=true