Loading…
A Systematic Method for Identifying Small-Molecule Modulators of Protein-Protein Interactions
Discovering small-molecule modulators of protein-protein interactions is a challenging task because of both the generally noncontiguous, large protein surfaces that form these interfaces and the shortage of high-throughput approaches capable of identifying such rare inhibitors. We describe here a ro...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2004-11, Vol.101 (44), p.15591-15596 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Discovering small-molecule modulators of protein-protein interactions is a challenging task because of both the generally noncontiguous, large protein surfaces that form these interfaces and the shortage of high-throughput approaches capable of identifying such rare inhibitors. We describe here a robust and flexible methodology that couples disruption of protein-protein complexes to host cell survival. The feasibility of this approach was demonstrated through monitoring a small-molecule-mediated protein-protein association (FKBP12-rapamycin-FRAP) and two cases of dissociation (homodimeric HIV-1 protease and heterodimeric ribonucleotide reductase). For ribonucleotide reductase, we identified cyclic peptide inhibitors from genetically encoded libraries that dissociated the enzyme subunits. A solid-phase synthetic strategy and peptide ELISAs were developed to characterize these inhibitors, resulting in the discovery of cyclic peptides that operate in an unprecedented manner, thus highlighting the strengths of a functional approach. The ability of this method to process large libraries, coupled with the benefits of a genetic selection, allowed us to identify rare, uniquely active small-molecule modulators of protein-protein interactions at a frequency of less than one in 10 million. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.0406999101 |