Loading…
Mitochondria-Related Male Infertility
Approximately 15% of human couples are affected by infertility, and about half of these cases of infertility can be attributed to men, through low sperm motility (asthenozoospermia) or/and numbers (oligospermia). Because mitochondrial genome (mtDNA) mutations are identified in patients with fertilit...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2006-10, Vol.103 (41), p.15148-15153 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Approximately 15% of human couples are affected by infertility, and about half of these cases of infertility can be attributed to men, through low sperm motility (asthenozoospermia) or/and numbers (oligospermia). Because mitochondrial genome (mtDNA) mutations are identified in patients with fertility problems, there is a possibility that mitochondrial respiration defects contribute to male infertility. To address this possibility, we used a transmitochondrial mouse model (mito-mice) carrying wild-type mtDNA and mutant mtDNA with a pathogenic 4,696-bp deletion (ΔmtDNA). Here we show that mitochondrial respiration defects caused by the accumulation of ΔmtDNA induced oligospermia and asthenozoospermia in the mito-mice. Most sperm from the infertile mito-mice had abnormalities in the middle piece and nucleus. Testes of the infertile mito-mice showed meiotic arrest at the zygotene stage as well as enhanced apoptosis. Thus, our in vivo study using mitomice directly demonstrates that normal mitochondrial respiration is required for mammalian spermatogenesis, and its defects resulting from accumulated mutant mtDNAs cause male infertility. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.0604641103 |